
SphereEx‑
DBPlusEngine
UserManual

V1.2.0

2022.11

Beijing SphereEx Technology Co., Ltd.

目录

1 Product Introduction 1

2 Features 9
3 Technical White Paper 68
4 Product White Paper 79
5 Performance White Paper 85
6 Quick Start 159
7 User Manual 162
8 Dev Manual 335
9 Best Practices 349
10 Test Manual 365
11 Reference 385
12 Obtain 449

i

Beijing SphereEx Technology Co., Ltd.

1
Product Introduction

■ The differences between the open source and commercial editions

1.1 What is DBPlusEngine?

DBPlusEngine is based on the open source kernel ShardingSphere, which is packaged with the addition of enhanced
enterprise‑class features, which can provide enterprises with enhanced data service capabilities, including but not
limited to data sharding and data security.
It consists of DBPlusEngine‑Driver andDBPlusEngine‑Proxy, twoproducts that can be deployed independently orwith
hybrid deployments. They all provide standardized data level scaling, distributed transactions, and distributed gov‑
ernance capabilities, and can be applied to a variety of diverse application scenarios such as Java isomorphism, het‑
erogeneous languages, and cloud native.

1.2 Core Concepts

■ Connect
Flexible adaptation of database protocol, SQL dialect and database storage. It can quickly connect applications and
heterogeneous databases.

■ Enhance
Capture database access entry to transparently provide additional features, such as: redirect (sharding, read/write
splitting and shadow), transform (data encryption and masking), authentication (security, audit and authority), gov‑
ernance (circuit breaker and access limitation and analyze, QoS and observability).

■ Pluggable
Leveraging the micro kernel and 3 layers pluggable architecture, features and databases can be embedded flexibily.
Developers can customize their ShardingSphere just like building with lego blocks.

■ Cluster mode
Providesmetadata sharing betweenmultiple DBPlusEngine instances and state coordination in distributed scenarios.
In a production environment where the real deployment goes live, you must use the cluster mode. It provides the
capabilities necessary for distributed systems such as horizontal scaling of computing power and high availability.
Clustered environments need to store metadata and coordinate node status through a separately deployed registry
center.

1

Beijing SphereEx Technology Co., Ltd.

1.3 Architecture

SphereEx‑DBPlusEngine focuses on pluggable architecture, providing features that can flexibly be embedded into
projects. Currently, features such as data sharding, read/write splitting, data encryption, shadow database, and SQL
dialects / database protocols such as MySQL, PostgreSQL, SQLServer, Oracle are supported and are all weaved by plu‑
gins. Developers can customize their own ShardingSphere just like building with lego blocks.

Fig. 1: Pluggable Platform

The pluggable architecture of DBPlusEngine are composed by L1 Kernel Layer, L2 Feature Layer and L3 Ecosystem
Layer.

2

Beijing SphereEx Technology Co., Ltd.

1.3.1 L1 Kernel Layer

An abstraction of the database’s basic capabilities. All components are required and the specific implementation
can be replaced by pluggable way. It includes a query optimizer, distributed transaction engine, distributed execution
engine, authority engine and scheduling engine.

1.3.2 L2 Feature Layer

Used toprovideenhancedcapability. All components areoptional andcancontain zeroormultiple components. Com‑
ponents isolate each other andmultiple components can be used together simultaneously. It includes data sharding,
read/write splitting, database high availability, data encryption, shadow database and so on. User‑defined features
can be fully customized and extended for the top‑level interface defined by Apache ShardingSphere without changing
the kernel’s code.

1.3.3 L3 Ecosystem Layer

Used to integrate into the current database ecosystem. It includes database protocol, SQL parser and storage adapter.

Fig. 2: Overview

3

Beijing SphereEx Technology Co., Ltd.

1.4 Advantages

■ Build a standard layer and ecosystem above heterogeneous databases.
DBPlusEngine is positioned as a Database Plus, and builds a standard layer and ecosystem above heterogeneous
databases. It focuses on how to reuse existing databases and their respective upper layer, rather than creating a new
database. DBPlusEngine stands at the upper level of the database and focuses on enhancing collaboration and com‑
patibility between databases.

■ Provides extensions and enhancements to legacy relational databases.
SphereEx‑DBPlusEngine is designed to leverage the compute and storage power of existing relational databases in
distributed scenarios. This is not an entirely new relational database. Relational databases still have a huge market
share today, and are the cornerstone of enterprises core systems. Relational databases will be difficult to replace in
the future, and thus we are more focused on providing incremental upgrades to the original databases, rather than
replacing them.

■ DBPlusEngine supports multi‑state access.
DBPlusEngine‑Driver uses a decentralized architecture that shares resources with applications.
DBPlusEngine‑Proxy adopts independent application deployment.
DBPlusEngine is applicable to standard database access mode and provides support for multiple languages. It is suit‑
able for OLTP and some OLAP scenarios.

1.5 Thedifferences between the open source edition and the commercial edi‑
tion

Module Level One Function Level Two Function Open Source Commercial
Kernel Function Dialect Compatibil‑

ity
MySQL √ √
PostgreSQL √ √
Oracle √ √
SQL Server √ √
openGauss √ √
SQL 92/2003 standard √ √

SQL Extension SQL Hint √ √
SQL dialect conversion √ √
DistSQL √ √

Distributed Transac‑
tion

XA transaction √ √
Flexible transaction √ √
Global transaction × √

Query Optimizer Native Query Optimization √ √
Federated query optimization √ √

Plugin Function Data Sharding Basic sharding strategy √ √
Customized sharding strategy × √
Automated sharding management × √
Pre sharding capability × √
Automatic data redistribution × √
Distributed object √ √

Data Security (de‑
cryption)

Data storage encryption √ √
Open source encryption algorithm √ √
Commercial encryption algorithm × √
Simple dense state calculation √ √
Complex dense state calculation × √

Data Security (au‑
thority)

User Management √ √
Role Management × √

continues on next page

4

Beijing SphereEx Technology Co., Ltd.

Table 1 – continued from previous page
Module Level One Function Level Two Function Open Source Commercial

Database table level authority control × √
Row and column level authority control × √
LDAP docking × √
Third party authority docking × √

Behavior Security
(AUDIT)

User behavior audit (afterwards) × √
Proactive audit (beforehand) × √

Flexible Scheduling Basic migration √ √
Distributed high performance migration × √
Data consistency verification √ √
Enhanced flow switching and control × √

Data Isolation Test production data isolation √ √
Test data traceability √ ×

Executive Function Metadata Manage‑
ment

Online strong consistency change × √
DDLmulti version control × √

High Availability Compute node high availability √ √
Storage node high availability × √
Fault perception and self‑healing √ √

Monitoring Diagno‑
sis

Host level monitoring × √
Component level monitoring √ √
Statement level monitoring (slow query) √ √
Enhance monitoring indicators × √
Monitoring alarm docking × √
Link tracking (APM) √ √

Delivery Capability Delivery of Products ShardingSphere‑JDBC √ √
ShardingSphere‑Proxy √ √
SphereEx‑Boot(command line tool) √ √
SphereEx‑Console(console) × √
Compatibility assessment tool × √

Support mode Community support √ √
Business support × √

Service Content Problem solving √ √
Architecture consulting × √
Training × √
Remote fault support × √
Field fault support × √
Installation and upgrade services × √
On‑site support services × √

1.6 Application Scenarios

1.6.1 Independent DBPlus Engine‑Driver products deployment

As the first product and the predecessor of DBPlusEngine, DBPlusEngine‑Driver is a lightweight Java framework that
provides extra services at Java JDBC layer.
With the client end connecting directly to the database, it provides services in the form of jar and requires no extra
deployment and dependence. It can be considered as an enhanced JDBC driver, fully compatible with JDBC and all
kinds of ORM frameworks.

■ Applicable to any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC Template or
direct use of JDBC.

■ Supports any third‑party database connection pool, such as DBCP, C3P0, BoneCP, HikariC.

5

Beijing SphereEx Technology Co., Ltd.

■ Supports any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any JDBC adapted
databases.

Fig. 3: ShardingSphere‑JDBC Architecture

DBPlusEngine‑Driver DBPlusEngine‑Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost More Less
Supported Languages Java Only Any
Performance Low loss Relatively High loss
Decentralization Yes No
Static Entry No Yes

DBPlusEngine‑Driver is suitable for java application.

1.6.2 Independent DBPlusEngine‑Proxy products deployment

DBPlusEngine‑Proxy is the second product of DBPlusEngine. It is a transparent database proxy, providing a database
server that encapsulates database binary protocol to support heterogeneous languages. Currently, MySQL and Post‑
greSQL (compatible with PostgreSQL‑based databases, such as openGauss) versions are provided.
It can use any kind of terminal (such as MySQL Command Client, MySQL Workbench, etc.) that is compatible with
MySQL or PostgreSQL protocols to operate data, making it friendlier to DBAs

■ Totally transparent to applications, it can be used directly as MySQL/PostgreSQL.
■ Applicable to any kind of client end that is compatible with MySQL/PostgreSQL protocol.

6

Beijing SphereEx Technology Co., Ltd.

Fig. 4: ShardingSphere‑Proxy Architecture

DBPlusEngine‑Driver DBPlusEngine‑Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost High Low
Supported Languages Java Only Any
Performance Low loss Relatively high loss
Decentralization Yes No
Static Entry No Yes

The advantages of DBPlusEngine‑Proxy lie in supporting heterogeneous languages and providing operational entries
for DBAs.

1.6.3 Hybrid deployment with DBPlusEngine‑Driver and DBPlusEngine‑Proxy

DBPlusEngine is an ecosystemconsisting ofmultiple endpoints together. Throughamixeduseof DBPlusEngine‑Driver
and DBPlusEngine‑Proxy, and a unified sharding strategy by the same registry center, DBPlusEngine can build an ap‑
plication system that is applicable to all kinds of scenarios. Architects can conveniently adjust the system architecture
to suit their business requirements.

7

Beijing SphereEx Technology Co., Ltd.

Fig. 5: ShardingSphere Hybrid Architecture

8

Beijing SphereEx Technology Co., Ltd.

2
Features

DBPlusEngine provides a variety of features, from database kernel and database database solution, to applications
closed features.
There is no boundary for these features, and we warmly welcomemore open source engineers to join the community
and provide exciting ideas and features.

■ Traffic Dual Routing (Commercial Edition)
■ Authority Control (Commercial Edition)

2.1 DB Compatibility

2.1.1 Background

Thanks to technology innovation, an increasing number of applications are established in new fields. This is causing
a rapid data increase, leading to fast innovation for data storage and computing methods.
Transaction, big data, association analysis, Internet of Things and other scenarios have emerged quickly, resulting in
a single database not being applicable to all application scenarios anymore. At the same time, it has become normal
for similar scenarios to use different databases.
The trend of database fragmentation is emerging.

2.1.2 Challenges

There is no unified database access protocol and SQL dialect, as well as the maintenance and monitoring methods
differences by various databases, learning and maintenance cost of developers and DBAs are increasing rapidly. Im‑
proving the compatibility with the original database is the premise for providing incremental services on it.
The compatibility between SQL dialect and database protocol is the key point to improve database compatibility.

9

Beijing SphereEx Technology Co., Ltd.

2.1.3 Goal

The goal of database compatibility for Apache ShardingSphere is to minimize or eliminate the differences be‑
tween various databases for the user.

2.1.4 SQL Parser

SQL is the standard operation language between users and databases. SQL Parse engine parses SQL into an abstract
syntax tree to provide to Apache ShardingSphere for understanding and implementing the add‑on features.
It supports SQL dialect for MySQL, PostgreSQL, SQLServer, Oracle, openGauss and SQL that conform to the SQL92
specification. Due to the complexity of SQL syntax, there are still some SQL that are not yet supported.
This chapter lists unsupported SQLs as a reference for users.
We will try best to support the unavailable SQLs in future versions.

MySQL

The following list includes unsupported SQL for MySQL:

SQL
CLONE LOCAL DATA DIRECTORY =‘clone_dir’
INSTALL COMPONENT‘file://component1’,‘file://component2’
UNINSTALL COMPONENT‘file://component1’,‘file://component2’
REPAIR TABLE t_order
OPTIMIZE TABLE t_order
CHECKSUM TABLE t_order
CHECK TABLE t_order
SET RESOURCE GROUP group_name
DROP RESOURCE GROUP group_name
CREATE RESOURCE GROUP group_name TYPE = SYSTEM
ALTER RESOURCE GROUP rg1 VCPU = 0‑63

openGauss

The following list includes unsupported SQL for openGauss:

SQL
CREATE type avg_state AS (total bigint, count bigint);
CREATE AGGREGATEmy_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;
CREATE SCHEMA alt_nsp1;
ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;
CREATE CONVERSION alt_conv1 FOR‘LATIN1’TO‘UTF8’FROM iso8859_1_to_utf8;
CREATE FOREIGN DATAWRAPPER alt_fdw1
CREATE SERVER alt_fserv1 FOREIGN DATAWRAPPER alt_fdw1
CREATE LANGUAGE alt_lang1 HANDLER plpgsql_call_handler
CREATE STATISTICS alt_stat1 ON a, b FROM alt_regress_1
CREATE TEXT SEARCH DICTIONARY alt_ts_dict1 (template=simple)
CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO def_test SELECT new.*
ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)
CREATE PUBLICATION pub1 FOR TABLE alter1.t1, ALL TABLES IN SCHEMA alter2

10

file://component1
file://component2
file://component1
file://component2

Beijing SphereEx Technology Co., Ltd.

PostgreSQL

The following list includes unsupported SQL for PostgreSQL:

SQL
CREATE type avg_state AS (total bigint, count bigint);
CREATE AGGREGATEmy_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;
CREATE SCHEMA alt_nsp1;
ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;
CREATE CONVERSION alt_conv1 FOR‘LATIN1’TO‘UTF8’FROM iso8859_1_to_utf8;
CREATE FOREIGN DATAWRAPPER alt_fdw1
CREATE SERVER alt_fserv1 FOREIGN DATAWRAPPER alt_fdw1
CREATE LANGUAGE alt_lang1 HANDLER plpgsql_call_handler
CREATE STATISTICS alt_stat1 ON a, b FROM alt_regress_1
CREATE TEXT SEARCH DICTIONARY alt_ts_dict1 (template=simple)
CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO def_test SELECT new.*
ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)
CREATE PUBLICATION pub1 FOR TABLE alter1.t1, ALL TABLES IN SCHEMA alter2

SQLServer

The following list includes unsupported SQL for SQLServer:
TODO

Oracle

The following list includes unsupported SQL for Oracle:
TODO

SQL92

The following list includes unsupported SQL for SQL92:
TODO

2.1.5 DB Protocol

Apache ShardingSphere implements the MySQL and PostgreSQL protocols.

2.1.6 Feature Support

Apache ShardingSphere provides the database distributed collaboration capability, and abstracts part of the database
features to the upper layer for unifiedmanagement to reduce the user difficulty.
Therefore, for the unified provided features, the native SQLwill no longer be transferred to the database, and it will be
prompted that the operation is not supported.
User can use the feature provided by ShardingSphere to replace it.
This chapter has listed unsupported database features and related SQLs reference for users.
There are some unsupported SQLs maybemissing, and the list is continuously updated.

11

Beijing SphereEx Technology Co., Ltd.

MySQL

The following is the list of unsupported SQL:

User & Role

SQL
CREATE USER‘finley’@‘localhost’IDENTIFIED BY‘password’
ALTER USER‘finley’@‘localhost’IDENTIFIED BY‘new_password’
DROP USER‘finley’@‘localhost’;
CREATE ROLE‘app_read’
DROP ROLE‘app_read’
SHOW CREATE USER finley
SET PASSWORD =‘auth_string’
SET ROLE DEFAULT;

Authorization

SQL
GRANT ALL ON db1.* TO‘jeffrey’@‘localhost’
GRANT SELECT ONworld.* TO‘role3’;
GRANT‘role1’,‘role2’TO‘user1’@‘localhost’
REVOKE INSERT ON . FROM‘jeffrey’@‘localhost’
REVOKE‘role1’,‘role2’FROM‘user1’@‘localhost’
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user_or_role
SHOW GRANTS FOR‘jeffrey’@‘localhost’
SHOW GRANTS FOR CURRENT_USER
FLUSH PRIVILEGES

PostgreSQL

The following list includes unsupported SQL for PostgreSQL:
TODO

SQLServer

The following list includes the unsupported SQL list for SQLServer:
TODO

12

Beijing SphereEx Technology Co., Ltd.

Oracle

The following list includes unsupported SQL for Oracle:
TODO

SQL92

The following list includes unsupported SQL for SQL92:
TODO

2.2 Management

2.2.1 Background

Unifiedmanagement capability of cluster perspective, and control capability of individual components are necessary
in modern database system.

2.2.2 Challenges

The challenges are unifiedmanagement of centralized management, and operation in case of single node in failure.
Centralizedmanagement uniformly manages the state of database storage nodes andmiddleware computing nodes,
and can detect the latest updates in the distributed environment in real time, further provide informationwith control
and scheduling.
In the overload traffic scenario, circuit breaker and request limiting for a node to ensure whole database cluster can
run continuously is a challenge to control ability of a single node.

2.2.3 Goal

The goal of DBPlusEngine management module is to achieve the integrated management ability from database to
computing node, and provide control ability for components in case of failure.

2.2.4 Core Concept

Circuit Breaker

Fuse connection between DBPlusEngine and the database. When a DBPlusEngine node exceeds the max load, stop
the node’s access to the database, so that the database can ensure sufficient resources to provide services for other
DBPlusEngine nodes.

13

Beijing SphereEx Technology Co., Ltd.

Request Limit

In case of overload requests, open request limiting to protect some requests can still respond quickly.

2.3 Sharding

2.3.1 Background

The traditional solution that stores all the data in one concentrated node has hardly satisfied the requirement of mas‑
sive data scenario in three aspects ‑ performance, availability and operation cost.
In performance, the relational database mostly uses B+ tree index. When the data amount exceeds the threshold,
deeper index will increase the disk IO access number, and weaken the performance of query. At the same time, high
concurrency requests also make the centralized database to be the greatest limitation of the system.
In availability, capacity can be expanded at a relatively low cost and any extent with stateless service, which canmake
all the pressure, at last, fall on the database. But the single data node or simple primary‑replica structure has been
harder and harder to take these pressures. Therefore, database availability has become the key to the whole system.
From the aspect of operation costs, when the data in a database instance has reached above the threshold, DBA’s
operation pressure will also increase. The time cost of data backup and data recovery will be more uncontrollable
with increasing amount of data. Generally, it is a relatively reasonable range for the data in single database case to be
within 1TB.
Under the circumstance that traditional relational databases cannot satisfy the requirement of the Internet, there are
more andmore attempts to store the data in native distributed NoSQL. But its incompatibility with SQL and imperfec‑
tion in ecosystem block it from defeating the relational database in the competition, so the relational database still
holds an unshakable position.
Sharding refers to splitting the data in one database and storing them in multiple tables and databases according to
some certain standard, so that the performance and availability can be improved. Bothmethods can effectively avoid
the query limitation caused by data exceeding affordable threshold. What’s more, database sharding can also effec‑
tively disperse TPS. Table sharding, though cannot ease the database pressure, can provide possibilities to transfer
distributed transactions to local transactions, since cross‑database upgrades are once involved, distributed transac‑
tions can turn pretty tricky sometimes. The use of multiple primary‑replica shardingmethod can effectively avoid the
data concentrating on one node and increase the architecture availability.
Splitting data through database sharding and table sharding is an effective method to deal with high TPS and mass
amount data system, because it can keep the data amount lower than the threshold and evacuate the traffic. Sharding
method can be divided into vertical sharding and horizontal sharding.

Vertical Sharding

According to business sharding method, it is called vertical sharding, or longitudinal sharding, the core concept of
which is to specialize databases for different uses. Before sharding, a database consists of many tables corresponding
to different businesses. But after sharding, tables are categorized into different databases according to business, and
the pressure is also separated into different databases. The diagram below has presented the solution to assign user
tables and order tables to different databases by vertical sharding according to business need.

14

Beijing SphereEx Technology Co., Ltd.

Fig. 1: Vertical Sharding

Vertical sharding requires to adjust the architecture and design from time to time. Generally speaking, it is not soon
enough to deal with fast changing needs from Internet business and not able to really solve the single‑node problem.
it can ease problems brought by the high data amount and concurrency amount, but cannot solve them completely.
After vertical sharding, if the data amount in the table still exceeds the single node threshold, it should be further
processed by horizontal sharding.

Horizontal Sharding

Horizontal sharding is also called transverse sharding. Compared with the categorization method according to busi‑
ness logic of vertical sharding, horizontal sharding categorizes data tomultiple databases or tables according to some
certain rules through certain fields, with each sharding containing only part of the data. For example, according to
primary key sharding, even primary keys are put into the 0 database (or table) and odd primary keys are put into the
1 database (or table), which is illustrated as the following diagram.

15

Beijing SphereEx Technology Co., Ltd.

Fig. 2: Horizontal Sharding

Theoretically, horizontal sharding has overcome the limitation of data processing volume in single machine and can
be extended relatively freely, so it can be taken as a standard solution to database sharding and table sharding.

2.3.2 Challenges

Though sharding has solved problems such as performance, availability and single‑node backup and recovery, its
distributed architecture has also introduced some new problems as acquiring profits.
One problem is that application development engineers and database administrators’operations become exception‑
ally laborious, when facing such scattered databases and tables. They should know exactly which database table is
the one to acquire data from.
Another challenge is that, the SQL that runs rightly in single‑nodedatabasesmaynot be right in the shardingdatabase.
The change of table name after sharding, or misconducts caused by operations such as pagination, order by or aggre‑
gated group by are just the case in point.
Cross‑database transaction is alsoa tricky thing thatdistributeddatabasesneed todeal. Fair useof sharding tables can
also lead to the full useof local transactionswhensingle‑tabledataamountdecreases. Troublesbroughtbydistributed
transactions can be avoided by the wise use of different tables in the same database. When cross‑database transac‑
tionscannotbeavoided, somebusinesses still need tokeep transactionsconsistent. Internetgiantshavenotmassively
adopted XA based distributed transactions since they are not able to ensure its performance in high‑concurrency sit‑
uations. They usually replace strongly consistent transactions with eventually consistent soft state.

16

Beijing SphereEx Technology Co., Ltd.

2.3.3 Goal

The main design goal of Apache ShardingSphere’s data sharding module is to try to reduce the influence of
sharding, in order to let users use horizontal sharding database group like one database.

2.3.4 Core Concept

Overview

This chapter introduces core concepts of data sharding.

Table

Table is the core concept of transparent data sharding. There are diversified tables provided for different data sharding
requirements by Apache ShardingSphere.

Logic Table

The logical name of the horizontal sharding databases (tables) with the same schema, it is the logical table identifica‑
tion in SQL. For instance, the data of order is divided into 10 tables according to the last number of the primary key,
and they are from t_order_0 to t_order_9, whose logic name is t_order.

Actual Table

The physical table that really exists in the horizontal sharding database, i.e., t_order_0 to t_order_9 in the instance
above.

Binding Table

It refers to theprimary table and the joiner tablewith the samesharding rules. Whenusingbinding tables inmulti‑table
correlating query, you must use the sharding key for correlation, otherwise Cartesian product correlation or cross‑
database correlation will appear, which will affect query efficiency. For example, t_order and t_order_item are both
sharded by order_id, and use order_id to correlate, so they are binding tables with each other. Cartesian product
correlation will not appear in themulti‑tables correlating query, so the query efficiency will increase greatly. Take this
one for example, if SQL is:
SELECT i.* FROM t_order o JOIN t_order_item iON o.order_id=i.order_idWHERE o.order_id in (10, 11);

When binding table relations are not configured, suppose the sharding key order_id routes value 10 to sharding 0 and
value 11 to sharding 1, there will be 4 SQLs in Cartesian product after routing:
SELECT i.* FROM t_order_0 o JOIN t_order_item_0 iON o.order_id=i.order_idWHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_0 o JOIN t_order_item_1 iON o.order_id=i.order_idWHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_0 iON o.order_id=i.order_idWHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 iON o.order_id=i.order_idWHERE o.order_id in (10, 11);

With binding table configuration and use order_id to correlate, there should be 2 SQLs after routing:
SELECT i.* FROM t_order_0 o JOIN t_order_item_0 iON o.order_id=i.order_idWHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 iON o.order_id=i.order_idWHERE o.order_id in (10, 11);

17

Beijing SphereEx Technology Co., Ltd.

In them, table t_order in the left endof FROMwill be takenbyShardingSphereas theprimary tableof query. In a similar
way, ShardingSphere will also take table t_order in the left end of FROM as the primary table of the whole binding
table. All the route computations will only use the sharding strategy of the primary table, so sharding computation
of t_order_item table will use the conditions of t_order. Due to this, sharding keys in binding tables should be totally
identical.

Broadcast Table

It refers to tables that exist in all shardingdatabase sources. The schemaanddatamust consist in eachdatabase. It can
be applied to the small data volume that needs to correlatewith big data tables to query, dictionary table for example.

Single Table

It refers to only one table that exists in all sharding database sources. It is suitable for little data in table without
sharding.

Data Node

As the atomic unit of sharding, it consists of data source name and actual table name, e.g. ds_0.t_order_0.
Mapping relationships between logic tables and actual tables, it can be divided into two kinds: uniform topology and
user‑defined topology.

Uniform topology

It means that tables are evenly distributed in each data source, for example:
db0
├── t_order0
└── t_order1
db1
├── t_order0
└── t_order1

The data node configurations will be as follows:
db0.t_order0, db0.t_order1, db1.t_order0, db1.t_order1

User‑defined topology

It means that tables are distributed with certain rules, for example:
db0
├── t_order0
└── t_order1
db1
├── t_order2
├── t_order3
└── t_order4

The data node configurations will be as follows:
db0.t_order0, db0.t_order1, db1.t_order2, db1.t_order3, db1.t_order4

18

Beijing SphereEx Technology Co., Ltd.

Sharding

Sharding Key

Column used to determine database (table) sharding. For example, in last numbermodulo of order ID sharding, order
ID is taken as the sharding key. The full route executed when there is no sharding column in SQL has a poor perfor‑
mance. Besides single sharding column, Apache ShardingSphere also supports multiple sharding columns.

Sharding Algorithm

Data sharding can be achieved by sharding algorithms through =, >=, <=, >, <, BETWEEN and IN. It can be implemented
by developers themselves, or using built‑in syntactic sugar of Apache ShardingSphere, with high flexibility.

Auto Sharding Algorithm

It provides syntactic sugar for sharding algorithm. It used to manage all data nodes automatically, users do not care
about the topology of physical data nodes. It includes lots of implementation for Mod, Hash, Range and Time Interval
etc.

User‑Defined Sharding Algorithm

It provides interfaces for developers to implement the sharding algorithm related to business implementation, and
allows users to manage the physical topology physical data nodes by themselves. It includes:

■ Standard Sharding Algorithm
It processes the sharding case in which single sharding keys =, IN, BETWEEN AND, >, <, >=, <= are used.

■ Complex Keys Sharding Algorithm
It processes the sharding case in whichmultiple sharding keys are used. It has a relatively complex logic that requires
developers to deal by themselves.

■ Hint Sharding Algorithm
It processes the sharding case in which Hint is used.

Sharding Strategy

It includes the sharding key and the sharding algorithm, and the latter one is extracted out for its independence. Only
sharding key + sharding algorithm can be used in sharding operation.

SQL Hint

In the case that the sharding column is not decide by SQL but other external conditions, SQL hint can be used to inject
sharding value. For example, databases are sharded according to the staff’s ID, but column does not exist in the
database. SQLHint can be used by twoways, Java API and SQL comment (TODO). Please refer to Hint formore details.

19

Beijing SphereEx Technology Co., Ltd.

Inline Expression

Motivation

Configuration simplicity and unity are twomain problems that inline expression intends to solve.
In complex sharding rules, with more data nodes, a large number of configuration repetitions make configurations
difficult to maintain. Inline expressions can simplify data node configuration work.
Java code is not helpful in the unified management of common configurations. By writing sharding algorithms with
inline expressions, users can store rules together, making them easier to be browsed and stored.

Syntax Explanation

The use of inline expressions is really direct. Users only need to configure ${ expression } or $‑>{ expression } to identify
them. ShardingSphere currently supports the configurations of data nodes and sharding algorithms. Inline expres‑
sions use Groovy syntax, which can support all kinds of operations, including inline expressions. For example:
${begin..end} means range
${[unit1, unit2, unit_x]} means enumeration
If there aremany continuous ${ expression } or $‑>{ expression } expressions, according to each sub‑expression result,
the ultimate result of the whole expression will be in cartesian combination.
For example, the following inline expression:
${['online', 'offline']}_table${1..3}

Will be parsed as:
online_table1, online_table2, online_table3, offline_table1, offline_table2, offline_table3

Configuration

Data Node

For evenly distributed data nodes, if the data structure is as follow:
db0
├── t_order0
└── t_order1
db1
├── t_order0
└── t_order1

It can be simplified by inline expression as:
db${0..1}.t_order${0..1}

Or
db$‑>{0..1}.t_order$‑>{0..1}

For self‑defined data nodes, if the data structure is:
db0
├── t_order0
└── t_order1
db1
├── t_order2

20

Beijing SphereEx Technology Co., Ltd.

├── t_order3
└── t_order4

It can be simplified by inline expression as:
db0.t_order${0..1},db1.t_order${2..4}

Or
db0.t_order$‑>{0..1},db1.t_order$‑>{2..4}

For data nodes with prefixes, inline expression can also be used to configure them flexibly, if the data structure is:
db0
├── t_order_00
├── t_order_01
├── t_order_02
├── t_order_03
├── t_order_04
├── t_order_05
├── t_order_06
├── t_order_07
├── t_order_08
├── t_order_09
├── t_order_10
├── t_order_11
├── t_order_12
├── t_order_13
├── t_order_14
├── t_order_15
├── t_order_16
├── t_order_17
├── t_order_18
├── t_order_19
└── t_order_20
db1
├── t_order_00
├── t_order_01
├── t_order_02
├── t_order_03
├── t_order_04
├── t_order_05
├── t_order_06
├── t_order_07
├── t_order_08
├── t_order_09
├── t_order_10
├── t_order_11
├── t_order_12
├── t_order_13
├── t_order_14
├── t_order_15
├── t_order_16
├── t_order_17
├── t_order_18
├── t_order_19
└── t_order_20

Users can configure separately, data nodes with prefixes first, those without prefixes later, and automatically com‑
bine them with the cartesian product feature of inline expressions. The example above can be simplified by inline
expression as:

21

Beijing SphereEx Technology Co., Ltd.

db${0..1}.t_order_0${0..9}, db${0..1}.t_order_${10..20}

Or
db$‑>{0..1}.t_order_0$‑>{0..9}, db$‑>{0..1}.t_order_$‑>{10..20}

Sharding Algorithm

For single sharding SQL that uses = and IN, inline expression can replace codes in configuration.
Inline expression is a piece of Groovy code in essence, which can return the corresponding real data source or table
name according to the computation method of sharding keys.
For example, sharding keys with the last number 0 are routed to the data sourcewith the suffix of 0, thosewith the last
number 1 are routed to the data source with the suffix of 1, the rest goes on in the same way. The inline expression
used to indicate sharding algorithm is:
ds${id % 10}

Or
ds$‑>{id % 10}

Distributed Primary Key

Motivation

In the development of traditional database software, the automatic sequence generation technology is a basic re‑
quirement. All kinds of databases have provided corresponding support for this requirement, such as MySQL auto‑
increment key, Oracle auto‑increment sequence and so on. It is a tricky problem that there is only one sequence
generated by different data nodes after sharding. Auto‑increment keys in different physical tables in the same logic
table cannot perceive each other and thereby generate repeated sequences. It is possible to avoid clashes by restrict‑
ing the initiative value and increasing the step of auto‑increment key. But introducing extra operation rules canmake
the solution lack integrity and scalability.
Currently, there aremany third‑party solutions that can solve this problemperfectly, (such as UUID and others) relying
on some particular algorithms to generate unrepeated keys or introducing sequence generation services. We have
provided several built‑in key generators, such as UUID, SNOWFLAKE. Besides, we have also extracted a key generator
interface to make users implement self‑defined key generator.

Built‑In Key Generator

UUID

Use UUID.randomUUID() to generate the distributed key.

22

Beijing SphereEx Technology Co., Ltd.

SNOWFLAKE

Users can configure the strategy of each table in sharding rule configurationmodule, with default snowflake algorithm
generating 64bit long integral data.
As the distributed sequence generation algorithm published by Twitter, snowflake algorithm can ensure sequences of
different processes do not repeat and those of the same process are ordered.

Principle

In the same process, it makes sure that IDs do not repeat through time, or through order if the time is identical. At
the same time, with monotonously increasing time, if servers are generally synchronized, generated sequences are
generally assumed to be ordered in a distributed environment. This can guarantee the effectiveness in index field
insertion, like the sequence of MySQL Innodb storage engine.
In the sequence generated with the snowflake algorithm, binary form has 4 parts, 1 bit sign, 41bit timestamp, 10bit
work ID and 12bit sequence number from high to low.

■ sign bit (1bit)
Reserved sign bit, constantly to be zero.

■ timestamp bit (41bit)
41bit timestamp can contain 2 to the power of 41milliseconds. One year can use 365 * 24 * 60 * 60 * 1000milliseconds.
We can see from the calculation:
Math.pow(2, 41) / (365 * 24 * 60 * 60 * 1000L);

The result is approximately equal to 69.73 years. Apache ShardingSphere snowflake algorithm starts from November
1st, 2016, and can be used until 2086, which we believe can satisfy the requirement of most systems.

■ work ID bit (10bit)
The sign is the only one in Java process. If applied in distributed deployment, each work ID should be different. The
default value is 0 and can be set through properties.

■ sequence number bit (12bit)
The sequence number is used to generate different IDs in a millisecond. If the number generated in that millisecond
exceeds 4,096 (2 to the power of 12), the generator will wait till the next millisecond to continue.
Please refer to the following picture for the detailed structure of snowflake algorithm sequence.

23

Beijing SphereEx Technology Co., Ltd.

Fig. 3: Snowflake

Clock‑Back

The clock‑back of server can generate repeated sequence, so the default distributed sequence generator has provided
amaximum clock‑backmillisecond. If the clock‑back time has exceeded it, the programwill report error. If it is within
the tolerance range, the generator will wait till after the last generation time and then continue to work. The default
maximum clock‑back millisecond is 0 and can be set through properties.

Hint Sharding Route

Motivation

Apache ShardingSphere can be compatible with SQL by parsing SQL statements and extracting columns and values to
shard. If SQL does not have sharding conditions, it is impossible to shard without full data node route.
In some applications, sharding conditions are not in SQL but in the external business logic. So it requires to designate
sharding result externally, which is referred to as Hint in ShardingSphere.

Mechanism

Apache ShardingSphere uses ThreadLocal to manage sharding key values. Users can program to add sharding condi‑
tions to HintManager, but the condition is only effective within the current thread.
In addition to the programming method, Apache ShardingSphere is able to cite Hint through special notation in SQL,
so that users can use that function in a more transparent way.
The SQL designatedwith sharding hint will ignore the former sharding logic but directly route to the designated node.

24

Beijing SphereEx Technology Co., Ltd.

2.3.5 Use Norms

Background

Although SphereEx‑DBPlusEngine intends to be compatible with all the SQLs and standalone databases, the dis‑
tributed scenario has created evenmore complex situations for the database. SphereEx‑DBPlusEngine wants to solve
massive data OLTP problem first, and eventually complete relevant OLAP support.

SQL

SQL Support Status

Compatiblewith all regular SQLwhen routing to single data node; The SQL routing tomultiple data nodes is pretty
complex, it divides the scenarios as totally supported, experimental supported and unsupported.

Totally Supported

Fully support DML, DDL, DCL, TCL and most regular DAL. Support complex query with pagination, DISTINCT, ORDER
BY, GROUP BY, aggregation and table JOIN.

Regular Query

■ SELECT Clause
SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE predicates]
[GROUP BY {col_name | position} [ASC | DESC], ...]
[ORDER BY {col_name | position} [ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

■ select_expr
*
| [DISTINCT] COLUMN_NAME [AS] [alias]
| (MAX |MIN | SUM | AVG)(COLUMN_NAME | alias) [AS] [alias]
| COUNT(* | COLUMN_NAME | alias) [AS] [alias]

■ table_reference
tbl_name [AS] alias] [index_hint_list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON conditional_expr | USING (column_list)]

Subquery

Stable supportedwhen sharding keys are using in both subquery and outer query, and values of sharding keys are the
same.
For example:
SELECT * FROM (SELECT * FROM t_orderWHERE order_id = 1) oWHERE o.order_id = 1;

Stable supported for subquery with pagination.
For example:

25

Beijing SphereEx Technology Co., Ltd.

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT * FROM t_order) row_WHERE rownum <= ?)WHERE
rownum > ?;

Sharding value in expression

Sharding value in calculated expressions will lead to full routing.
For example, if create_time is sharding value:
SELECT * FROM t_orderWHERE to_date(create_time, 'yyyy‑mm‑dd') = '2019‑01‑01';

Experimental Supported

Experimental support specifically refers to use of Federation execution engine. The engine still in rapid development,
basically available to users, but it still needs lots of optimization. It is an experimental product.

Subquery

Experimental supported when sharding keys are not using for both subquery and outer query, or values of sharding
keys are not the same.
For example:
SELECT * FROM (SELECT * FROM t_order) o;

SELECT * FROM (SELECT * FROM t_order) oWHERE o.order_id = 1;

SELECT * FROM (SELECT * FROM t_orderWHERE order_id = 1) o;

SELECT * FROM (SELECT * FROM t_orderWHERE order_id = 1) oWHERE o.order_id = 2;

Join with cross databases

When tables in a join query are distributed on different database instances, sql statement will be supported by Fed‑
eration execution engine. Assuming that t_order and t_order_item are sharding tables with multiple data nodes, and
no binding table rules are configured, t_user and t_user_role are single tables that distributed on different database
instances. Federation execution engine can support the following commonly used join query:
SELECT * FROM t_order o INNER JOIN t_order_item iON o.order_id = i.order_idWHERE o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user uON o.user_id = u.user_idWHERE o.user_id = 1;

SELECT * FROM t_order o LEFT JOIN t_user_role rON o.user_id = r.user_idWHERE o.user_id = 1;

SELECT * FROM t_order_item i LEFT JOIN t_user uON i.user_id = u.user_idWHERE i.user_id = 1;

SELECT * FROM t_order_item i RIGHT JOIN t_user_role rON i.user_id = r.user_idWHERE i.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role rON u.user_id = r.user_idWHERE u.user_id = 1;

26

Beijing SphereEx Technology Co., Ltd.

Unsupported

CASE WHEN can not support as following:
■ CASE WHEN containing sub‑query
■ CASE WHEN containing logical‑table (instead of table alias)

SQL Example

Stable supported SQL Necessary conditions
SELECT * FROM tbl_name
SELECT * FROM tbl_nameWHERE (col1 = ? or col2 = ?) and col3 = ?
SELECT * FROM tbl_nameWHEREcol1 = ? ORDERBY col2DESCLIMIT
?
SELECTCOUNT(*), SUM(col1), MIN(col1), MAX(col1), AVG(col1) FROM
tbl_nameWHERE col1 = ?
SELECT COUNT(col1) FROM tbl_name WHERE col2 = ? GROUP BY
col1 ORDER BY col3 DESC LIMIT ?, ?
SELECT DISTINCT * FROM tbl_nameWHERE col1 = ?
SELECT COUNT(DISTINCT col1), SUM(DISTINCT col1) FROM
tbl_name
(SELECT * FROM tbl_name)
SELECT * FROM (SELECT * FROM tbl_nameWHEREcol1 = ?) oWHERE
o.col1 = ?

Subquery and outer query in same sharded
data node after route

INSERT INTO tbl_name (col1, col2,⋯) VALUES (?, ?,⋯.)
INSERT INTO tbl_name VALUES (?, ?,⋯.)
INSERT INTO tbl_name (col1, col2,⋯) VALUES(1 + 2, ?,⋯)
INSERT INTO tbl_name (col1, col2,⋯) VALUES (?, ?,⋯.), (?, ?,⋯.)
INSERT INTO tbl_name (col1, col2, ⋯) SELECT col1, col2, ⋯FROM
tbl_nameWHERE col3 = ?

Inserted and selected table must be the
same or binding tables

REPLACE INTO tbl_name (col1, col2,⋯) SELECT col1, col2,⋯FROM
tbl_nameWHERE col3 = ?

Replaced and selected table must be the
same or binding tables

UPDATE tbl_name SET col1 = ? WHERE col2 = ?
DELETE FROM tbl_nameWHERE col1 = ?
CREATE TABLE tbl_name (col1 int,⋯)
ALTER TABLE tbl_name ADD col1 varchar(10)
DROP TABLE tbl_name
TRUNCATE TABLE tbl_name
CREATE INDEX idx_name ON tbl_name
DROP INDEX idx_name ON tbl_name
DROP INDEX idx_name

27

Beijing SphereEx Technology Co., Ltd.

Experimental supported SQL Necessary conditions
SELECT * FROM (SELECT * FROM tbl_name) o
SELECT * FROM (SELECT * FROM tbl_name) o WHERE o.col1
= ?
SELECT * FROM (SELECT * FROM tbl_nameWHERE col1 = ?) o
SELECT * FROM (SELECT * FROM tbl_nameWHERE col1 = ?) o
WHERE o.col1 = ?

Subquery and outer query in different sharded data
node after route

SELECT (SELECT MAX(col1) FROM tbl_name) a, col2 from
tbl_name
SELECT SUM(DISTINCT col1), SUM(col1) FROM tbl_name
SELECT col1, SUM(col2) FROM tbl_nameGROUPBY col1HAV‑
ING SUM(col2) > ?
SELECT col1, col2 FROM tbl_name UNION SELECT col1, col2
FROM tbl_name
SELECT col1, col2 FROM tbl_name UNION ALL SELECT col1,
col2 FROM tbl_name

Slow SQL Reason
SELECT * FROM tbl_nameWHERE to_date(create_time,‘yyyy‑
mm‑dd’) = ?

Full route because of sharding value in calculate
expression

Unsupported SQL Reason So lution
INSERT INTO tbl_name (col1, col2,
⋯) SELECT*FROMtbl_nameWHERE -

col3 = ?

SELECT clause does not support *‑
shorthand and built‑in key genera‑
tor

REPLACE INTO tbl_name (col1, col2,
⋯) SELECT*FROMtbl_nameWHERE -

col3 = ?

SELECT clause does not support *‑
shorthand and built‑in key genera‑
tor

SELECT MAX(tbl_name.col1) FROM
tbl_name

Use table name as column owner in
function

I nstead of table alias

Pagination

Totally support pagination queries of MySQL, PostgreSQL and Oracle; partially support SQLServer pagination query
due to its complexity.

Pagination Performance

Performance Bottleneck

Pagination with query offset too high can lead to a low data accessibility, take MySQL as an example:
SELECT * FROM t_orderORDER BY id LIMIT 1000000, 10

This SQL will make MySQL acquire another 10 records after skipping 1,000,000 records when it is not able to use
indexes. Its performance can thus be deduced. In sharding databases and sharding tables (suppose there are two
databases), to ensure the data correctness, the SQL will be rewritten as this:
SELECT * FROM t_orderORDER BY id LIMIT 0, 1000010

28

Beijing SphereEx Technology Co., Ltd.

It also means taking out all the records prior to the offset and only acquire the last 10 records after ordering. It will
further aggravate the performance bottleneck effect when the database is already slow in execution. The reason for
that is the former SQL only needs to transmit 10 records to the user end, but now it will transmit 1,000,010 * 2 records
after the rewrite.

Optimization of ShardingSphere

ShardingSphere was optimized in two ways.
Firstly, it adopts stream process + merger ordering to avoid excessive memory occupation. SQL rewrite unavoidably
occupies extra bandwidth, but it will not lead to sharp increase of memory occupation. Most peoplemay assume that
ShardingSphere would upload all the 1,000,010 * 2 records to thememory and occupy a large amount of it, which can
lead tomemory overflow. But each ShardingSphere comparison only acquires current result set record of each shard,
since result set records have their own order. The record stored in thememory is only the current position pointed by
the cursor in the result set of the shard routed to. For the item to be sorted which has its own order, merger ordering
only has the time complexity of O(mn(log m)), and the number of shard m is generally small enough to be considered
as O(n), with a very low performance consumption.
Secondly, ShardingSphere further optimizes the query that only falls into single shards. Requests of this kind can
guarantee the correctness of records without rewriting SQLs. Under this kind of situation, ShardingSphere will not do
that in order to save the bandwidth.

Pagination Solution Optimization

For LIMIT cannot search for data through indexes, if the ID continuity can be guaranteed, pagination by ID is a better
solution:
SELECT * FROM t_orderWHERE id > 100000 AND id <= 100010ORDER BY id

Or use the ID of last record of the former query result to query the next page:
SELECT * FROM t_orderWHERE id > 100000 LIMIT 10

Pagination Sub‑query

Both Oracle and SQLServer pagination need to be processed by sub‑query, ShardingSphere supports pagination re‑
lated sub‑query.

■ Oracle
Support rownum pagination:
SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id FROM t_order o JOIN t_order_item i
ON o.order_id = i.order_id) row_WHERE rownum <= ?)WHERE rownum > ?

Do not support rownum + BETWEEN pagination for now.
■ SQLServer

Support TOP + ROW_NUMBER() OVER pagination:
SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS rownum, * FROM t_order o) AS temp
WHERE temp.rownum > ?ORDER BY temp.order_id

Support OFFSET FETCH pagination after SQLServer 2012:
SELECT * FROM t_order oORDER BY idOFFSET ? ROW FETCH NEXT ? ROWS ONLY

Do not support WITH xxx AS (SELECT ...) pagination. Because SQLServer automatically generated by Hibernate uses
WITH statements, Hibernate SQLServer pagination or two TOP + sub‑query pagination is not available now.

29

Beijing SphereEx Technology Co., Ltd.

■ MySQL, PostgreSQL
Both MySQL and PostgreSQL support LIMIT pagination, no need for sub‑query:
SELECT * FROM t_order oORDER BY id LIMIT ?OFFSET ?

2.4 Distributed Transaction

2.4.1 Background

Database transactions should satisfy ACID (atomicity, consistency, isolation and durability) features.
■ Atomicity guarantees that each transaction is treated as a single unit, which either succeeds completely, or fails

completely.
■ Consistency ensures that a transaction can only bring the database from one valid state to another, maintaining

database invariants.
■ Isolation ensures that concurrent execution of transactions leaves the database in the same state that would

have been obtained if the transactions were executed sequentially.
■ Durability guarantees that once a transaction has been committed, it will remain committed even in the case of

a system failure (e.g., power outage or crash).
In single data node, transactions are only restricted to the access and control of single database resources, called
local transactions. Almost all the mature relational databases have provided native support for local transactions.
But in distributed application situations based on micro‑services, more and more of them require to include multi‑
ple accesses to services and the corresponding database resources in the same transaction. As a result, distributed
transactions appear.
Though the relational database has provided perfect native ACID support, it can become an obstacle to the system
performance under distributed situations. How to make databases satisfy ACID features under distributed situations
or find a corresponding substitute solution, is the priority work of distributed transactions.

Local Transaction

Itmeans let eachdatanode tomanage their own transactionson thepremise that anydistributed transactionmanager
is not on. They do not have any coordination and communication ability, or knowother data nodes have succeeded or
not. Thoughwithout any consumption in performance, local transactions are not capable enough in high consistency
and eventual consistency.

2PC Transaction

The earliest distributed transaction model of XA standard is X/Open Distributed Transaction Processing (DTP) model
brought up by X/Open, XA for short.
Distributed transaction based on XA standard has little intrusion to businesses. Its biggest advantage is the trans‑
parency to users, who can use distributed transactions based on XA standard just as local transactions. XA standard
can strictly guarantee ACID features of transactions.
That guarantee can be a double‑edged sword. It ismore proper in the implementation of short transactions with fixed
time, because it will lock all the resources needed during the implementation process. For long transactions, data
monopolization during its implementation will lead to an obvious concurrency performance recession for business
systems depend on hot spot data. Therefore, in high concurrency situations that take performance as the highest,
distributed transaction based on XA standard is not the best choice.

30

Beijing SphereEx Technology Co., Ltd.

BASE Transaction

If we call transactions that satisfy ACID features as hard transactions, then transactions based on BASE features are
called soft transactions. BASE is the abbreviation of basically available, soft state and eventually consistent those
there factors.

■ Basically available featuremeansnot all theparticipants of distributed transactionshave tobeonline at the same
time.

■ Soft state feature permits some time delay in system renewal, which may not be noticed by users.
■ Eventually consistent feature of systems is usually guaranteed by message availability.

There is a high requirement for isolation in ACID transactions: all the resources must be locked during the transaction
implementationprocess. TheconceptofBASE transactions isupliftingmutexoperation fromresource level tobusiness
level throughbusiness logic. Broaden the requirement for high consistency to exchange the rise in system throughput.
Highly consistent transactions based on ACID and eventually consistent transactions based on BASE are not silver
bullets, and they can only take the most effect in the most appropriate situations. The detailed distinctions between
them are illustrated in the following table to help developers to choose technically:

Local transaction 2PC (3PC) transaction BASE transaction
Business trans for‑
mation

None None Relevant interface

Co nsistency Not support Support Eventual consistency
Isolation Not support Support Business‑side guarantee
Co ncurrency pe
rformance

No influence Serious recession Minor recession

Situation Inconsistent operation at
business side

Short transaction & low
concurrency

Long transaction & high
concurrency

2.4.2 Challenge

For different application situations, developers need to reasonably weight the performance and the function between
all kinds of distributed transactions.
Highly consistent transactions do not have totally the same API and functions as soft transactions, and they cannot
switch between each other freely and invisibly. The choice between highly consistent transactions and soft transac‑
tions as early as development decision‑making phase has sharply increased the design and development cost.
Highly consistent transactions basedonXA is relatively easy touse, but is not goodat dealingwith long transaction and
high concurrency situation of the Internet. With a high access cost, soft transactions require developers to transform
the application and realize resources lock and backward compensation.

2.4.3 Goal

ThemaindesigngoalofApacheShardingSphere’sdistributedtransactionmodule is to integrateexistingmature
transaction cases to provide anunifieddistributed transaction interface for local transactions, 2PC transactions
andsoft transactions; andcompensate for thedeficienciesof current solutions toprovideaone‑stopdistributed
transaction solution.

31

Beijing SphereEx Technology Co., Ltd.

2.4.4 Core Concept

Navigation

This chapter mainly introduces the core concepts of distributed transactions, including:
■ XA transaction
■ BASE transaction

XA

2PC transaction submit uses the DTPModel defined by X/OPEN, inwhich created AP (Application Program), TM (Trans‑
action Manager) and RM (Resource Manager) can guarantee a high transaction consistency. TM and RM use XA proto‑
col for bidirectional streaming. Compared with traditional local transactions, XA transactions have a prepared phase,
where the database cannot only passively receive commands, but also notify the submitter whether the transaction
can be accepted. TM can collect all the prepared results of branch transactions before submitting all of them together,
which has guaranteed the distributed consistency.

Fig. 4: 2PC XAmodel

Java implements the XAmodel through defining a JTA interface, in which ResourceManager requires an XA driver pro‑
vided by database manufacturers and TransactionManager is provided by transaction manager manufacturers. Tra‑
ditional transactionmanagers need to be bound with application server, which creates a high use cost. Built‑in trans‑
action managers have already been able to provide services through jar packages. Integrated with Apache Sharding‑
Sphere, it can guarantee the high consistency in cross‑database transactions after sharding.
Usually, to use XA transaction, users must use its connection pool provided by transaction manager manufacturers.
However,whenApacheShardingSphere integratesXA transactions, it has separated themanagementof XA transaction
and its connection pool, so XA will not invade the applications.

32

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Beijing SphereEx Technology Co., Ltd.

BASE

A paper published in 2008 first mentioned that BASE transaction advocates the use of eventual consistency instead of
consistency to improve concurrency of transaction processing.
TCC and Saga are two regular implementations. They use reverse operation implemented by developers themselves
to ensure the eventual consistency when data rollback. SEATA implements SQL reverse operation automatically, so
that BASE transaction can be used without the intervention of developers.
Apache ShardingSphere integrates SEATA as solution of BASE transaction.

2.4.5 Use Norms

Background

Although SphereEx‑DBPlusEngine intends to be compatible with all distributed scenario and best performance, under
CAP theorem guidance, there is no sliver bullet with distributed transaction solutions.
Apache ShardingSphere wants to give the users the choice of distributed transaction type and use the most suitable
solution in different scenarios.

Local Transaction

Supported

■ Support none‑cross‑database transactions. For example, sharding table or sharding database with its route re‑
sult in same database.

■ Support cross‑database transactions caused by logic exceptions. For example, update two databases in trans‑
action with exception thrown, data can rollback in both databases.

Unsupported

■ Donot support thecross‑database transactionscausedbynetworkorhardwarecrash. Forexample,whenupdate
two databases in transaction, if one database crashes before commit, then only the data of the other database
can commit.

XA

Supported

■ Support cross‑database transactions after sharding.
■ Operation atomicity and high data consistency in 2PC transactions.
■ When service is down and restarted, commit and rollback transactions can be recovered automatically.
■ Support use XA and non‑XA connection pool together.

33

https://queue.acm.org/detail.cfm?id=1394128
https://github.com/seata/seata

Beijing SphereEx Technology Co., Ltd.

Unsupported

■ Recover committing and rolling back in other machines after the service is down.

XA Transactionmanaged by XA Statement

■ When using XA START to open a XA Transaction, DBPlusEngine will pass it to backend database directly, and you
have to manage this transaction by yourself.

■ When recovering from a crush, you have to call XA RECOVER to check unfinished transaction, and choose to com‑
mit or rollback using xid. Or you can use ONE PHASE commit without PREPARE.

MySQL [(none)]> use test1 │MySQL [(none)]> use test2
Reading table information for completion of table and column names │Reading table information for
completion of table and column names
You can turn off this feature to get a quicker startup with ‑A │You can turn off this feature to get a quicker
startup with ‑A

│
Database changed │Database changed
MySQL [test1]> XA START '61c052438d3eb'; │MySQL [test2]> XA START '61c0524390927';
Query OK, 0 rows affected (0.030 sec) │Query OK, 0 rows affected (0.009 sec)

│
MySQL [test1]> update test set val = 'xatest1' where id = 1; │MySQL [test2]> update test set val = 'xatest2'
where id = 1;
Query OK, 1 row affected (0.077 sec) │Query OK, 1 row affected (0.010 sec)

│
MySQL [test1]> XA END '61c052438d3eb'; │MySQL [test2]> XA END '61c0524390927';
Query OK, 0 rows affected (0.006 sec) │Query OK, 0 rows affected (0.008 sec)

│
MySQL [test1]> XA PREPARE '61c052438d3eb'; │MySQL [test2]> XA PREPARE '61c0524390927';
Query OK, 0 rows affected (0.018 sec) │Query OK, 0 rows affected (0.011 sec)

│
MySQL [test1]> XA COMMIT '61c052438d3eb'; │MySQL [test2]> XA COMMIT '61c0524390927';
Query OK, 0 rows affected (0.011 sec) │Query OK, 0 rows affected (0.018 sec)

│
MySQL [test1]> select * from test where id = 1; │MySQL [test2]> select * from test where id = 1;
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+ │+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| id | val | │| id | val |
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+ │+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| 1 | xatest1 | │| 1 | xatest2 |
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+ │+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
1 row in set (0.016 sec) │1 row in set (0.129 sec)

MySQL [test1]> XA START '61c05243994c3'; │MySQL [test2]> XA START '61c052439bd7b';
Query OK, 0 rows affected (0.047 sec) │Query OK, 0 rows affected (0.006 sec)

│
MySQL [test1]> update test set val = 'xarollback' where id = 1; │MySQL [test2]> update test set val = 'xarollback
' where id = 1;
Query OK, 1 row affected (0.175 sec) │Query OK, 1 row affected (0.008 sec)

│
MySQL [test1]> XA END '61c05243994c3'; │MySQL [test2]> XA END '61c052439bd7b';
Query OK, 0 rows affected (0.007 sec) │Query OK, 0 rows affected (0.014 sec)

│
MySQL [test1]> XA PREPARE '61c05243994c3'; │MySQL [test2]> XA PREPARE '61c052439bd7b';
Query OK, 0 rows affected (0.013 sec) │Query OK, 0 rows affected (0.019 sec)

│
MySQL [test1]> XA ROLLBACK '61c05243994c3'; │MySQL [test2]> XA ROLLBACK '61c052439bd7b';
Query OK, 0 rows affected (0.010 sec) │Query OK, 0 rows affected (0.010 sec)

│
MySQL [test1]> select * from test where id = 1; │MySQL [test2]> select * from test where id = 1;
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+ │+‑‑‑‑+‑‑‑‑‑‑‑‑‑+

34

Beijing SphereEx Technology Co., Ltd.

| id | val | │| id | val |
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+ │+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| 1 | xatest1 | │| 1 | xatest2 |
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+ │+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
1 row in set (0.009 sec) │1 row in set (0.083 sec)

MySQL [test1]> XA START '61c052438d3eb';
Query OK, 0 rows affected (0.030 sec)

MySQL [test1]> update test set val = 'recover' where id = 1;
Query OK, 1 row affected (0.072 sec)

MySQL [test1]> select * from test where id = 1;
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| id | val |
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| 1 | recover |
+‑‑‑‑+‑‑‑‑‑‑‑‑‑+
1 row in set (0.039 sec)

MySQL [test1]> XA END '61c052438d3eb';
Query OK, 0 rows affected (0.005 sec)

MySQL [test1]> XA PREPARE '61c052438d3eb';
Query OK, 0 rows affected (0.020 sec)

MySQL [test1]> XA RECOVER;
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| formatID | gtrid_length | bqual_length | data |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 1 | 13 | 0 | 61c052438d3eb |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.010 sec)

MySQL [test1]> XA RECOVER CONVERT XID;
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| formatID | gtrid_length | bqual_length | data |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 1 | 13 | 0 | 0x36316330353234333864336562 |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.011 sec)

MySQL [test1]> XA COMMIT 0x36316330353234333864336562;
Query OK, 0 rows affected (0.029 sec)

MySQL [test1]> XA RECOVER;
Empty set (0.011 sec)

BASE

Supported

■ Support cross‑database transactions after sharding.
■ Support RC isolation level.
■ Rollback transaction according to undo log.
■ Support recovery committing transaction automatically after the service is down.

35

Beijing SphereEx Technology Co., Ltd.

Unsupported

■ Does not support other isolation level except RC.

To Be Optimized

■ SQL parsed twice by SphereEx‑DBPlusEngine and SEATA.

2.5 Read/write splitting

2.5.1 Background

Database throughput is facing bottlenecks with increasing TPS. For applications with massive concurrence read but
less write at the same time, we can divide the database into a primary database and a replica database. The primary
database is responsible for the insert, delete and update of transactions, while the replica database is responsible for
queries. It can significantly improve the query performance of the whole system by effectively avoiding row locks.
Oneprimary databasewithmultiple replica databases can further enhanceprocessing capacity bydistributingqueries
evenly into multiple data replicas. Multiple primary databases with multiple replica databases can enhance not only
throughput but also availability. Therefore, the system can still run normally, even though any database is down or
physical disk destroyed.
Different from the sharding that separates data to all nodes according to sharding keys, read/write splitting routes read
and write separately to primary database and replica databases according SQL analysis.

36

Beijing SphereEx Technology Co., Ltd.

Fig. 5: Background

Data in read/write splitting nodes are consistent, whereas that in shards is not. The combined use of sharding and
read/write splitting will effectively enhance the system performance.

2.5.2 Challenges

Though read/write splitting can enhance system throughput and availability, it also brings inconsistent data, includ‑
ing that among multiple primary databases and among primary databases and replica databases. What’s more, it
also brings the same problem as data sharding, complicating developer and operator’s maintenance and operation.
The following diagram shows the complex topological relationship between applications and database groups when
sharding used together with read/write splitting.

37

Beijing SphereEx Technology Co., Ltd.

Fig. 6: Challenges

2.5.3 Goal

Themain design goal of read/write splitting of DBPlusEngine is to try to reduce the influence of read/write splitting, in
order to let users use primary‑replica database group like one database.

38

Beijing SphereEx Technology Co., Ltd.

2.5.4 Core Concept

Primary Database

It refers to the database used in data insertion, update and deletion. It only supports single primary database for now.

Replica Database

It refers to the database used in data query. It supports multiple replica databases.

Primary Replica Replication

It refers to the operation to asynchronously replicate data from the primary database to the replica database. Because
of the asynchrony of primary‑replica synchronization, there may be short‑time data inconsistency between them.

Load Balance Strategy

Through this strategy, queries separated to different replica databases.

2.5.5 Use Norms

Supported

■ Provide the read/write splitting configuration of one primary database with multiple replica databases, which
can be used alone or with sharding table and database;

■ Primary nodes need to be used for both reading and writing in the transaction;
■ Forcible primary database route based on SQL Hint;
■ The primary database provides read traffic when all secondary databases are down.

Unsupported

■ Data replication between the primary and the replica databases;
■ Data inconsistency caused by replication delay between databases;
■ Double or multiple primary databases to provide write operation;
■ The data for transaction across primary and replica nodes are inconsistent; In the read/write splitting model,

primary nodes need to be used for both reading and writing in the transaction.

2.6 HA

2.6.1 Background

High availability is the most basic requirement of modern systems. As the cornerstone of the system, the database is
also essential for high availability.
In the distributed database system with storage‑compute splitting, the high availability solution of storage node and
compute node are different. The stateful storage nodes need to pay attention to data consistency, health detection,

39

Beijing SphereEx Technology Co., Ltd.

primary node election and so on. The stateless compute nodes need to detect the changes of storage nodes, they also
need to set up an independent load balancer and have the ability of service discovery and request distribution.
DBPlusEngine provides compute nodes and reuse database as storage nodes. Therefore, the high availability solution
it adopts is to use the high availability solution of the database itself as the high availability of the storage node, and
detect the changes automatically.

2.6.2 Challenges

DBPlusEngine needs to detect high availability solution of diversified storage nodes automatically, and can also inte‑
grate the readwrite splitting dynamically, which is the main challenge of implementation.

2.6.3 Goal

Themain goal of DBPlusEngine’s high availability module is to ensure 24/7 uninterrupted database service as much
as possible.

2.6.4 Core Concept

High Availability Type

DBPlusEngine does not provide a high availability database solution, it reuses 3rd party high availability solution and
auto‑detect switch of primary and replica databases.
Specifically, the ability of DBPlusEngine provided is database discovery, detect the primary and replica databases au‑
tomatically, and updates the connection of compute nodes to the databases.

Dynamic Readwrite‑Splitting

When high availability and read/write0‑splitting are used together, there is unnecessary to configure specific primary
and replica databases for readwrite‑splitting.
When high availability and read/write splitting are used together, it supports detecting the delay time of the secondary
database during semi‑synchronous replication and asynchronous replication, and dynamically routes the secondary
database with low delay to provide read traffic.
Highly available data sources will update the primary and replica databases of read/write splitting dynamically, and
route the query and update SQL correctly.
High availability also provides that all secondary databases are down, and the read traffic is automatically routed to
the main databased, to ensure the availability of the business system.

2.6.5 Use Norms

Supported

■ MySQL MGR single‑primary mode.
■ MySQL primary‑secondary replication mode.
■ openGauss primary‑secondary replication mode.

40

Beijing SphereEx Technology Co., Ltd.

Unsupported

■ MySQL MGRmulti‑primary mode.

2.7 Data Migration

2.7.1 Background

In a scenario where the business continues to develop and the amount of data and concurrency reaches a certain
extent, the traditional single database may face problems in terms of performance, scalability and availability.
Although NoSQL solutions can solve the above problems through data sharding and horizontal scale‑out, NoSQL
databases generally do not support transactions and SQL.
DBPlusEngine can also solve the above problems and supports data sharding and horizontal scale‑out, while at the
same time, also supporting distributed transactions and SQL.
The data migration scheme provided by DBPlusEngine can help the traditional single database smoothly switch to
DBPlusEngine.

2.7.2 Challenges

Thedatamigrationprocess shouldnotaffect the running services. So thefirst challenge is tominimize the timewindow
during which data is not available.
Next, data migration should not affect existing data. So the second challenge is to ensure the data correctness.

2.7.3 Goal

The major goal of SphereEx‑DBPlusEngine in performing data migration is to reduce the impact of data migration on
services and provide a one‑stop universal data migration solution.

2.7.4 Core Concept

Nodes

Instances for running compute or storage tier component processes. These can either be physical machines, virtual
machines, or containers, etc.

Cluster

Multiple nodes that are assembled together to provide a specified service.

41

Beijing SphereEx Technology Co., Ltd.

Source

The storage cluster where the original data resides.

Target

The target storage cluster to which the original data is to be migrated.

Data Migration Process

The entire process of replicating data from one storage cluster to another.

Stock Data

The data that was already in the data node before the data migration operation started.

Incremental Data

New data generated by operational systems during the execution of data migration operations.

2.7.5 Limitations

Supported Procedures

■ Migration of peripheral data to databases managed by SphereEx‑DBPlusEngine.
■ Migration of integer or string primary key tables.

Procedures not supported

■ Migrate tables without primary keys or unique keys.
■ Migrate tables with composite primary keys or composite unique keys.
■ Migration on top of the current storage node is not supported, so a brand new database cluster needs to be

prepared as the migration target cluster.

2.8 Scaling

2.8.1 Definition

Scaling refers to the system that dynamically expands or shrinks the capacity according to the status of the storage
layer nodes, `to ensure that the resource consumption is reduced as much as possible while meeting the business
needs of the upper layer.

42

Beijing SphereEx Technology Co., Ltd.

2.8.2 Related Concepts

Node

An instance running a compute or storage layer component process, which can be a physical machine, a virtual ma‑
chine, a container, and so on.

Cluster

Multiple nodes that are grouped together to provide a specific service.

2.8.3 Limitations

Supported Items

■ Integer or string primary key table migration.

Unsupported Items

■ No primary key table migration.
■ Composite primary key table migration.

2.8.4 How it works

If the sharding algorithm and the usemethodmeet the conditions, it can be efficiently scaled and contracted, without
the need to move data or only a small amount of data.

43

Beijing SphereEx Technology Co., Ltd.

Range sharding/scaling‑out

Fig. 7: Detailed process

44

Beijing SphereEx Technology Co., Ltd.

Range sharding/scaling‑in

Fig. 8: Detailed process

2.8.5 Related References

Scaling

2.9 Encryption

2.9.1 Background

When the encryption and decryption configuration are used by the current user, only the names of plaintext column,
ciphertext column and auxiliary query column can be configured, while the field definitions of these columns cannot
be configured.
Therefore, when the user executes relevant DDL statements, the encryption column can only be created according
to the definition of logical column. The type and length of the rewritten plaintext column and ciphertext column are
copied according to the logical column. There are two problems with this rewriting method:

■ Encryption algorithms with different field types before and after encryption cannot be supported (for example,
a numeric type becomes a string type after encryption).

■ For the field length, users cannot customize it. The length of ciphertext is usually greater than that of plaintext.
Here below, you can see the rewriting of encrypted columns when creating a table. We see definition of varchar(100)
DEFAULT NULL and definition of user_cipher in user_id is exactly the same.
mysql> PREVIEW CREATE TABLE `t_encrypt` (`id` int(11) DEFAULT NULL, `user_id` varchar(100) DEFAULT NULL, `order_id`
varchar(100) DEFAULT NULL) ENGINE=InnoDB;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

45

Beijing SphereEx Technology Co., Ltd.

| data_source_name | sql |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ds_0 | CREATE TABLE `t_encrypt` (`id` int(11) DEFAULT NULL, user_cipher varchar(100) DEFAULT NULL, user_plain
varchar(100) DEFAULT NULL, order_cipher varchar(100) DEFAULT NULL) ENGINE=InnoDB |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

In order to improve the usability of the feature, it is necessary to addfield type configuration for the encrypted column,
allowing flexible configuration to the users.
Data encryption provides cloud key management and encryption function, as follows:

■ Cloud key management
The encrypted key plaintext configuration adopted by encrypt has potential security risks in the props file. The cloud
key management function can be added to manage encrypted keys through AWS.

■ Encryption
Currently, DBPlusEngine provides an encryption solution. For new tables and new businesses, you can directly use
the encryption rules to configure, but for existing data tables, you need to encrypt the plaintext fields in these tables
to convert them into encrypted content. At the same time, if the user needs to change the key, we also provide the
corresponding decryption function, and the two cooperate to complete the key replacement.

2.9.2 Challenges

In real business scenarios, relevant development teams often need to implement andmaintain a set of encryption and
decryption systems according to the needs of the company’s security team.
When the encryption scenario changes, the self maintained encryption system often faces the risk of rebuild or modi‑
fication.
Additionally, when it comes to existing businesses, it is relatively complex to achieve seamless encryption transforma‑
tion in a transparent, safe and low‑risk manner without modifying business logic and SQL.

2.9.3 Goal

By adding the configuration of encryption column field type definition, users can rewrite according to the configured
plaintext column and ciphertext column when executing DDL statements, making the encryption and decryption fea‑
ture easier to use.

2.9.4 Core Concept

Logic Column

Column name used to encrypt, it is the logical column identification in SQL.
It includes cipher column (required), query assistant column (optional) and plain column (optional).

46

Beijing SphereEx Technology Co., Ltd.

Logical column type (datatype)

It is used to define the types of logical columns, such as INT NOTNULL，VARCHAR(200) DEFAULT NULL etc. For details,
see the definitions of various dialect fields in the official documents, such as the definition of column_definition in
MySQL create statement (https://dev.mysql.com/doc/refman/8.0/en/create‑table.html).

Cipher Column (cipherColumn)

Encrypted data column.

Ciphertext Column Type (cipherdatatype)

Used to define the type of ciphertext column, which is the same as that of logical column.

Query Assistant Column (assistedQueryColumn)

Column used to assistant for query.
For non‑idempotent encryption algorithms with higher security level, irreversible idempotent columns provided for
query.

Query Assistant Column Type (ssistedQueryDataType)

Used to define query assistant column types, the same as logical column types.

Plain Column (plainColumn)

Column used to persist plain column, for service provided during data encryption.
Should be removed after data cleaning.

Plain Column Type (plainDataType)

Used to define plain column types, the same as logical column types.

Encrypting (encrypting)

Encrypt the unencrypted data in the database in batches.

Decrypting (decrypting)

Decrypt the encrypted data in the database in batches.

47

https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Beijing SphereEx Technology Co., Ltd.

2.9.5 Implementation

Cloud keymanagement

The key is managed in the cloud, for example, the secretkey function of AWS is used to save the key, to improve the
security and convenience of the entire encryption.
When initializing the encryption algorithm, the program establishes a connection with AWS to obtain the relevant key
stored in AWS, and then stores the key in the algorithm. The whole data encryption process does not involve network
interaction with the cloud.

Fig. 9: implementation

Encrypting

The encryption task is triggered by DistSQL. After receiving the request of the encryption task, the programwill create
the encryption task according to the current encryption rules. The encrypting task is mainly composed of two parts,
one is the query task, the other is the update task. The query task is responsible for querying the user’s table data
and obtaining the plaintext fields to be encrypted, and then pushing them to the channel. The update task obtains
data from the channel and encrypts the update. The whole task creation and execution process will interact with the
governance center, so users can query the task progress and clean up tasks through relevant DistSQL.

48

Beijing SphereEx Technology Co., Ltd.

Fig. 10: implementation

2.9.6 Usage Norms

Supported

■ Encrypt/decrypt one or more columns in the database table.
■ Compatible with all regular SQL.

Unsupported

■ It is necessary to process the original stock data in the database by itself.
■ The value of encryption columns cannot support comparison, such as: >, <, ORDER BY, BETWEEN, LIKE, etc.
■ The value of encryption columns cannot support calculation, such as AVG, SUM, and calculation expressions.

49

Beijing SphereEx Technology Co., Ltd.

2.10 Shadow DB

2.10.1 Background

Under thedistributedapplicationarchitecturebasedonmicroservices, businesses requiremultiple services tobecom‑
pleted through a series of services andmiddleware calls. The pressure testing of a single service can no longer reflect
the real scenario.
In the test environment, the cost of rebuild complete set of pressure test environment similar to the production envi‑
ronment is too high. It is usually impossible to simulate the complexity and data of the production environment.
So, it is the better way to use the production environment for pressure test. The test results obtained real capacity and
performance of the system accurately.

2.10.2 Challenges

Pressure testing on production environment is a complex and huge task. Coordination and adjustments between
microservices andmiddlewares required to copewith the transparent transmissionof different flow rates andpressure
test tags. Usually we will build a complete set of pressure testing platform for different test plans.
Data isolation have to be done at the database‑level, in order to ensure the reliability and integrity of the production
data, data generated by pressure testing routed to test database. Prevent test data from polluting the real data in the
production database.
This requires business applications to performdata classification basedon the transparently transmittedpressure test
identification before executing SQL, and route the corresponding SQL to the corresponding data source.

2.10.3 Goal

DBPlusEngine focuses on data solutions in pressure testing on production environment.
Themain goal of theDBPlusEngine shadowDatabasemodule is routing pressure testing data to user defineddatabase
automatically.

2.10.4 Core Concept

Production Database

The database used for production data.

Shadow Database

The database for pressure testing data isolation.

50

Beijing SphereEx Technology Co., Ltd.

Shadow Algorithm

The shadow algorithms are closely related to business, 2 types of shadow algorithms provided:
■ Column based shadow algorithm

Recognize data from SQL and route to shadow databases. Suitable for test data driven scenario.
■ Hint based shadow algorithm

Recognize comment from SQL and route to shadow databases. Suitable for identify passed by upstream system sce‑
nario.

2.10.5 Usage Norms

Supported

■ Hint based shadow algorithm support all SQL.
■ Column based shadow algorithm support part of SQL.

Unsupported

Hint based shadow algorithm

■ None

Column based shadow algorithm

■ Does not support DDL.
■ Does not support range, group and subquery, for example: BETWEEN, GROUP BY⋯HAVING⋯;

SQL support list:
■ INSERT

SQL S upported
INSERT INTO table (column,⋯) VALUES (value,⋯) Y
INSERT INTO table (column,⋯) VALUES (value,⋯),(value,⋯),⋯ Y
INSERT INTO table (column,⋯) SELECT column1 from table1 where column1 = value1 N

■ SELECT/UPDATE/DELETE

Condition SQL Sup‑
ported

= SELECT/UPDATE/DELETE⋯WHERE column = value Y
LIKE/NOT LIKE SELECT/UPDATE/DELETE⋯WHERE column LIKE/NOT LIKE value Y
IN/NOT IN SELECT/UPDATE/DELETE⋯WHERE column IN/NOT IN (value1,value2,⋯) Y
BETWEEN SELECT/UPDATE/DELETE⋯WHERE column BETWEEN value1 AND value2 N
GROUP BY ⋯HAV‑
ING⋯

SELECT/UPDATE/DELETE⋯WHERE⋯GROUP BY column HAVING column > value N

Subquery SELECT/UPDATE/DELETE⋯WHERE column = (SELECT column FROM tableWHERE
column = value)

N

51

Beijing SphereEx Technology Co., Ltd.

2.11 Observability

2.11.1 Background

In order to grasp the distributed system status, observe running state of the cluster is a new challenge. The point‑to‑
point operationmodeof logging into a specific server is not suitable for large number of distributed servers. Telemetry
through observable data is the recommended operation andmaintenancemode in such cases. Tracking, metrics and
logging are important ways to obtain observable data of system status.
APM (application performancemonitoring)monitors and diagnoses the performance of the systemby collecting, stor‑
ing and analyzing the observable data of the system. Its main functions include performance index monitoring, call
stack analysis, service topology, etc.
DBPlusEngine is not responsible for gathering, storing and demonstrating APM data, but provides the necessary infor‑
mation for the APM. In otherwords, DBPlusEngine is only responsible for generating valuable data and submitting it to
relevant systems through standard protocols or plug‑ins. Tracing is to obtain the tracking information of SQL parsing
and SQL execution. DBPlusEngine provides support for SkyWalking, Zipkin, Jaeger and OpenTelemetry by default. It
also supports users to develop customized components through plug‑in.

■ Use Zipkin or Jaeger
Just provides correct Zipkin or Jaeger server information in the agent configuration file.

■ Use OpenTelemetry
OpenTelemetry was merged by OpenTracing and OpenCencus in 2019. In this way, you only need to fill in the appro‑
priate configuration in the agent configuration file according to OpenTelemetry SDK Autoconfigure Guide.

■ Use SkyWalking
Enable the SkyWalking plugin configuration file and configure the SkyWalking apm‑toolkit.

■ Use SkyWalking’s automatic monitor probe
In cooperation with the Apache SkyWalking team, the DBPlusEngine team has created ShardingSphere automatic
monitor probe to automatically send performance data to SkyWalking. Note that automatic probe cannot be used
together with DBPlusEngine plugin probe.
Metrics used to collect and display statistical indicator of cluster. DBPlusEngine supports Prometheus by default.

2.11.2 Challenges

Tracing and metrics need to collect system information through event tracking. Lots of events tracking make kernel
codemessy, difficult to maintain, and difficult to customize extend.

2.11.3 Goal

The goal of the DBPlusEngine observability module is providing as many performance and statistical indicators as
possible and isolating kernel code and embedded code.

52

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://skywalking.apache.org/

Beijing SphereEx Technology Co., Ltd.

2.11.4 Core Concept

Agent

Based on bytecode enhance and plugin design to provide tracing, metrics and logging features. Enable the plugin in
agent to collect data and send data to the integrated 3rd APM system.

APM

APM is the abbreviation for application performance monitoring. It works for performance diagnosis of distributed
systems, including chain demonstration, service topology analysis and so on.

Tracing

Tracing data between distributed services or internal processes will be collected by agent. It then will be sent to APM
system.

Metrics

System statistical indicator which collected from agent. Write to time series databases periodically. 3rd party UI can
display the metrics data simply.

2.11.5 Usage Norms

Compile source code

Download DBPlusEngine from GitHub,Then compile.
git clone ‑‑depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install ‑Dmaven.javadoc.skip=true ‑Dcheckstyle.skip=true ‑Drat.skip=true ‑Djacoco.skip=true ‑DskipITs ‑DskipTests ‑
Prelease

Output directory: shardingsphere‑agent/shardingsphere‑agent‑distribution/target/apache‑shardingsphere‑
${latest.release.version}‑shardingsphere‑agent‑bin.tar.gz

Agent configuration

■ Directory structure
Create agent directory, and unzip agent distribution package to the directory. ``shell mkdir agent tar ‑zxvf
apache‑shardingsphere‑:math:`{latest.release.version}‑shardingsphere‑agent‑bin.tar.gz ‑C agent cd agent
tree . ├── conf │ ├── agent.yaml │ └── logback.xml ├── plugins │ ├── shardingsphere‑
agent‑logging‑base‑{latest.release.version}.jar │ ├── shardingsphere‑agent‑metrics‑prometheus‑
latest.release.version.jar│ ├──shardingsphere − agent − tracing − jaeger−{latest.release.version}.jar
│ ├── shardingsphere‑agent‑tracing‑opentelemetry‑latest.release.version.jar│ ├──shardingsphere −
agent − tracing − opentracing−{latest.release.version}.jar │ └── shardingsphere‑agent‑tracing‑zipkin‑
${latest.release.version}.jar └── shardingsphere‑agent.jar

* Configuration file

agent.yaml is a configuration file. The plug‑ins include Jaeger, opentracing, Zipkin, opentelemetry, logging and Prometheus.
Remove the corresponding plug‑in in ignoredpluginnames to start the plug‑in.

53

Beijing SphereEx Technology Co., Ltd.

```yaml
applicationName: shardingsphere‑agent
ignoredPluginNames:
‑ Jaeger
‑ OpenTracing
‑ Zipkin
‑ OpenTelemetry
‑ Logging
‑ Prometheus

plugins:
Prometheus:
host: "localhost"
port: 9090
props:
JVM_INFORMATION_COLLECTOR_ENABLED : "true"

Jaeger:
host: "localhost"
port: 5775
props:
SERVICE_NAME: "shardingsphere‑agent"
JAEGER_SAMPLER_TYPE: "const"
JAEGER_SAMPLER_PARAM: "1"

Zipkin:
host: "localhost"
port: 9411
props:
SERVICE_NAME: "shardingsphere‑agent"
URL_VERSION: "/api/v2/spans"
SAMPLER_TYPE: "const"
SAMPLER_PARAM: "1"

OpenTracing:
props:
OPENTRACING_TRACER_CLASS_NAME: "org.apache.skywalking.apm.toolkit.opentracing.SkywalkingTracer"

OpenTelemetry:
props:
otel.resource.attributes: "service.name=shardingsphere‑agent"
otel.traces.exporter: "zipkin"

Logging:
props:
LEVEL: "INFO"

■ Parameter description:

54



Beijing SphereEx Technology Co., Ltd.

Name Description Value range Default
value

JVM _INFOR‑
MATION_CO
LLEC‑
TOR_ENABLED

Start JVM
collector

true、false true

SER‑
VICE_NAME

Tracking
service
name

Custom shardi
ngsphere‑
agent

JAEG
ER_SAMPLER_TYPE

Jaeger sam‑
ple rate type

const、proba bilistic、ratel imiting、remote const

JAEGE
R_SAMPLER_PARAM

Jaeger sam‑
ple rate pa‑
rameter

const:0、1, pr obabilistic:0.0 ‑ 1.0, ratelimiting: > 0, Customize
the number of acquisitions per secon d，remote：need to
customize the remote service addres,JA EGER_SAMPLER_MA
NAGER_HOST_PORT

1（const
type）

SAM‑
PLER_TYPE

Zipkin sam‑
ple rate type

const、co unting、ratelim iting、boundary const

SAM‑
PLER_PARAM

Zipkin sam‑
pling rate
parameter

const:0、1, counting:0.01 ‑ 1.0, ratelimiting: > 0, boundary:0.0001 ‑
1.0

1（const
type）

otel.reso
urce.attributes

open‑
telemetry
properties

String key value pair (, split) servi
ce.name=shardi
ngsphere‑
agent

otel.
traces.exporter

Tracing ex‑
poter

zipkin、jaeger zipkin

otel
.traces.sampler

Open‑
telemetry
sample rate
type

alway s_on、always_of f、traceidratio always_on

otel.tra
ces.sampler.arg

Open‑
telemetry
sample rate
parameter

tr aceidratio：0.0 ‑ 1.0 1.0

Used in DBPlusEngine‑Proxy

■ Startup script
Configure the absolute path of shardingsphere‑agent.jar to the start.sh startup script of shardingsphere proxy.
nohup java ${JAVA_OPTS} ${JAVA_MEM_OPTS} \
‑javaagent:/xxxxx/agent/shardingsphere‑agent.jar \
‑classpath ${CLASS_PATH} ${MAIN_CLASS} >> ${STDOUT_FILE} 2>&1 &

■ Launch plugin
bin/start.sh

After normal startup, you can view the startup log of the plugin in the DBPlusEngine proxy log, and you can view the
data at the configured address.

55



Beijing SphereEx Technology Co., Ltd.

2.12 Traffic Dual Routing

2.12.1 Background

In complex business scenarios, architects usually use a hybrid deployment architecture to flexibly build application
systems suitable for various scenarios by mixing DBPlusEngine‑Driver and DBPlusEngine‑Proxy, while using a unified
registry to configure the sharding strategy.
DBPlusEngine‑Driver adopts a decentralized architecture and shares resources with applications. It is suitable for
High‑Performance Lightweight OLTP applications developed by Java. However, because DBPlusEngine‑Driver shares
resources with applications, when executing SQL that consumesmore resources, the stability and performance of ap‑
plicationswill be affected. At the same time, DBPlusEngine‑Driver consumes a large number of connections. When ap‑
plications and databases are deployed in different network partitions, the impact of network latency on performance
will be more obvious.
DBPlusEngine‑Proxy provides a unified static entry and is independent of application deployment. It is suitable for
OLAP applications and scenarios of managing andmaintaining sharding databases. Users use DBPlusEngine‑Proxy to
execute SQL that consumes more resources, which can effectively avoid affecting applications.
In order to improve the query performance and stability of the application, we can consider forwarding the SQL that
consumesmore resources at theDBPlusEngine‑Driver access end to theDBPlusEngine‑Proxy access end located in the
same network as the database. The DBPlusEngine‑Proxy access end calculates the query results and returns them to
the application uniformly.

Fig. 11: Architecture

56



Beijing SphereEx Technology Co., Ltd.

2.12.2 Challenges

Although the performance and stability of the application can be effectively improved by forwarding the SQL that
consumes more resources at the access end of DBPlusEngine‑Driver to DBPlusEngine‑Proxy for execution, it also
leads to more complex deployment architecture. Users need to determine which statements need to be forwarded
to DBPlusEngine‑Proxy, and develop relevant business logic at the DAO layer to control the forwarding of SQL.
In addition, in the scenario of starting a transaction, forwarding some SQL in the transaction to DBPlusEngine‑Proxy
for execution will affect the consistency and visibility of the transaction, thus affecting the use of the transaction by
the business system.

2.12.3 Goal

The main design goal of the DBPlusEngine Traffic module is to make the impact of SQL forwarding as transparent as
possible, and let the user use themixed deployment cluster of DBPlusEngine‑Driver andDBPlusEngine‑Proxy asmuch
as possible.

2.12.4 Core Concept

Tag

The tag attribute configured for the DBPlusEngine‑Proxy instance is used to distinguish instances. When the
DBPlusEngine‑Driver turns on the traffic function, the forwarding target is the DBPlusEngine‑Proxy instance corre‑
sponding to the tag.

Forwarding Strategy

For SQL at the access end of DBPlusEngine‑Driver, use the strategy of forwarding, includes: target proxy instance label,
forwarding algorithm and load balancing algorithm. According to different algorithms, the forwarding strategy can be
divided into transaction forwarding strategy and ordinary forwarding strategy. When the algorithm in the strategy is
configured as TransactionTrafficAlgorithm the forwarding strategy is transaction forwarding strategy, and when the
algorithm in the strategy is configured as other algorithms, the forwarding strategy is ordinary forwarding strategy.

Forwarding Algorithm

Algorithms used to determine whether the current SQL needs forwarding include HintTrafficAlgorithm, SegmentTraf‑
ficAlgorithm and TransactionTrafficAlgorithm.

■ HintTrafficAlgorithm based on SQL Hint function to do SQL forwarding.
■ SegmentTrafficAlgorithm forwards based on SQL statements, and internally provides forwarding algorithms

based on SQL strings and SQL regular matching.
■ TransactionTrafficAlgorithm is an algorithmspecially used to handle how to forward SQL statements in a transac‑

tionwhena transaction is started. Atpresent, it supports FIRST_SQL, JDBCandProxy three strategies. FIRST_SQL
means the first forwarding result based on transaction statement, to forward SQL statement in the transaction.
JDBC indicates that all SQL of transaction statements are forwarded to the JDBC access terminal for execution.
Proxy means that all SQL of transaction statements are forwarded to the proxy access terminal for execution.

57



Beijing SphereEx Technology Co., Ltd.

Load Balancing Algorithm

The load balancing algorithm forwards SQL statements to different proxy instances corresponding to tags for execu‑
tion. At present, it has two load balancing algorithms: RANDOM and ROUND_ROBIN.

2.12.5 Use Norms

Supported

■ Support forwarding of all commonly used SQL.

Unsupported

■ SQL that is not supported by the kernel function configured by the user is still not supported after forwarding.
■ It does not support forwarding SQL to different access terminals or proxy instances for execution after starting a

transaction.

2.12.6 Related Reference

Configuration of Traffic Rule

2.13 Login Authentication

2.13.1 Overview

In order to ensure the security of user data and distributed configuration information, DBPlusEngine‑Proxy provides
the user authentication feature, which cannot be turned off. Otherwise, the unauthenticated client connectionwill be
rejected. Currently, DBPlusEngine‑Proxy supports a variety of user authentication protocols, including:

■ MySQL Client: mysql_native_password, mysql_clear_password
■ PostgreSQL Client: MD5, password
■ openGauss Client: scram‑sha‑256

At the same time, in order to facilitate the unified identity management of enterprise users, DBPlusEngine also pro‑
vides LDAP (Lightweight Directory Access Protocol) authentication. LDAP authentication has supported MySQL and
PostgreSQL clients.

2.13.2 Characteristic

Users do not need to consider which protocol to choose when using DBPlusEngine‑Proxy. The protocol negotiation
process is automatically completed between DBPlusEngine and the client.

■ When using MySQL client, mysql_native_password is used by default. Only when the user needs LDAP authenti‑
cation, DBPlusEngine communication will require the client switch to mysql_clear_password.

■ WhenusingPostgreSQLclient,MD5 is usedbydefault. Onlywhen theuser needs LDAPauthentication, DBPlusEn‑
gine communication will require the client switch to password.

58



Beijing SphereEx Technology Co., Ltd.

2.14 Authority Control

2.14.1 Definition

DBPlusEngine provides distributed cooperation capability for the database. Concurrently, somedatabase features are
abstracted to the upper layer for unifiedmanagement, to reduce user difficulties and improve operation efficiency.
Authority control is one of these capabilities.
The following is a list of some of the benefits for giving authority control to DBPlusEngine for unified management:
‑ Avoid confusion for users when accessing heterogeneous resources, while eliminating the worry of which dialect
to use for management. ‑ Use logical database and logical table for authorization management, which is isolated
from the lower real database table, making it more convenient for users to understand. ‑ Avoid the inconsistency
of authorization information caused by the change of database resources, and there will be no consumption due to
information synchronization.
Therefore, in order to make authority control easier to use, the DBPlusEngine team created a new authority control
system.

2.14.2 Related Concepts

User

Refers to the user of DBPlusEngine.

Initial user

Refers to the user set through the configuration file before DBPlusEngine is started.

Ordinary users

Corresponding to the initial user, ordinary users are dynamically created during the operation of DBPlusEngine.

Role

Role is a named collection of a certain number of authorities. Role based authority control can simplify the process of
user authority management.

Privilege

Refers to the power of the user to perform operations on specific targets.

59



Beijing SphereEx Technology Co., Ltd.

DistSQL

DistSQL (Distributed SQL) is DBPlusEngine’s operating language. Once DBPlusEngine abstracts and unifies the au‑
thority control ability, it provides aproprietaryDistSQL syntax to facilitate the administrator’smanagement andmain‑
tenance of users and permissions.

DML

Data Manipulation Language, including INSERT, SELECT, UPDATE and DELETE statements.

DDL

Data Definition Language, including CREATE, ALTER, DROP and TRUNCATE statements.

2.14.3 Impact on the System

■ Finely granular authority control
It can precisely control the operation authorities granted to each user at the database level, table level and column
level.

■ Unified interactive language
Use uniqueDistSQL toDBPlusEngine for user and authoritymanagement. Nomatterwhether the storage node selects
MySQL, PostgreSQL, openGauss or Oracle, it can carry out undifferentiated authority control.

■ Authority control takes effect in real time
Changes to users or authorizations take effect in real time without restarting the DBPlusEngine.

■ Authorization information is automatically synchronized in the cluster
When the user and authorization information are changed, other computing nodes in the cluster can also receive the
change in real time to complete the user authorization update. The administrator does not need to repeat operations
at multiple nodes to facilitate cluster management.

2.14.4 Principle

60



Beijing SphereEx Technology Co., Ltd.

Authority storage

Fig. 12: Architecture

In the architecture of DBPlusEngine, the computing node (DBPlusEngine‑Proxy) is stateless and does not provide data
storage capacity. Therefore, the user account and authorization information will be stored in the governance center.
At the same time, thanks to the capability of the Governance Center, the information can be distributed to multiple
computing nodes in the cluster in real time, which will greatly reduce the maintenance cost of users when using the
cluster and provide management efficiency.
On the other hand, due to the unified authority management mechanism, the DBPlusEngine will no longer forward
the received native DCL statements to the lower storage node, but will give an unsupported prompt. Users must use
DistSQL provided by DBPlusEngine for account and authorization management.

61



Beijing SphereEx Technology Co., Ltd.

Authority provider

Fig. 13: Architecture

DBPlusEngine uses pluggable architecture to organize and expand features. Among them, the authority engine pro‑
vides users with a variety of different authority providers, which are:
Note: The authority provider is specified by the administrator before the DBPlusEngine is started.

62



Beijing SphereEx Technology Co., Ltd.

Authentication process

Fig. 14: Architecture

In DBPlusEngine, authority is verified level by level from top to bottom. When the user has the upper authority, it will
not be checked down to ensure the authentication efficiency. Such as: ‑ If the user has global SELECT authority, there
is no need to check whether the user has the SELECT authorization of the target database table during the SELECT
operation. ‑ If the user has the INSERT authority at the database level, it is not necessary to check whether the user
has the INSERT authorization of the target table during the INSERT operation.
And so on.

2.14.5 Relevant Reference

Configuration of Authority (Commercial Edition)

2.15 DistSQL

2.15.1 Background

DistSQL（Distributed SQL) is SphereEx‑DBPlusEngine’s specific SQL, providing added‑on operation capability if com‑
pared to standard SQL.

63



Beijing SphereEx Technology Co., Ltd.

2.15.2 Challenges

When using DBPlusEngine‑Proxy, developers can operate data just like using a database, but they need to configure
resources and rules through YAML files (or registry center). However, the format of YAML and habits changed by using
registry center are not friendly to DBA.
DistSQL allows users to operate SphereEx‑DBPlusEngine just like a database, transforming it from a framework and
middleware for developers to a database product for DBAs.
DistSQL is divided into RDL, RQL, RAL and RUL.

■ RDL (Resource & Rule Definition Language) responsible for the definition of resources and rules;
■ RQL (Resource & Rule Query Language) responsible for the query of resources and rules;
■ RAL (Resource&RuleAdministrationLanguage) responsible for theadded‑onadministrator featureof hint, trans‑

action type switch, sharding execute planning and so on.
■ RUL (Resource Utility Language) responsible for SQL parsing, SQL formatting, preview execution plan and more

utility functions.

2.15.3 Goal

DistSQL aims at breaking the boundary between middleware and database, and let developers use SphereEx‑
DBPlusEngine just like a database.

2.15.4 Notice

Currently DistSQL can be used with DBPlusEngine‑Proxy only, not with DBPlusEngine‑Driver.

2.15.5 Related Reference
DistSQL

2.16 Auto Scaling on Cloud (HPA)

2.16.1 Definition

In Kubernetes, HorizontalPodAutoscaler(HPA) automatically updatesworkload resources to automatically scalework‑
loads to meet requirements.
SphereEx‑Operator uses the HPA feature in Kubernetes and combines the relevant indicators of SphereEx‑
DBPlusEngine to automatically scale the capacity during operation in the kubernetes cluster.
After the auto scaling feature is enabled, the SphereEx‑Operator will apply an HPA object in the Kubernetes cluster
while deploying a SphereEx‑DBPlusEngine cluster.

64



Beijing SphereEx Technology Co., Ltd.

2.16.2 Related Concepts

HPA

HPA (HorizontalPodAutoscaler) refers to that SphereEx‑Operator uses theHPA function in Kubernetes to auto scale the
capacity of SphereEx‑DBPlusEngine cluster.

2.16.3 Impact on the System

After auto scaling is enabled,manually setting the replica of SphereEx‑DBPlusEngine in kuberneteswill not take effect.
The number of replicas of SphereEx‑DBPlusEngine cluster is controlled by the maximum andminimum values of HPA
controller, and elastic scaling will be processed between these two values.
The minimum number of starting copies of SphereEx‑DBPlusEngine will also be controlled by the minimum number
of copies of HPA. After the automatic scaling feature is turned on, SphereEx‑DBPlusEnginewill start with theminimum
number of copies of HPA.
The scaling usingHPA is the horizontal scaling of SphereEx‑DBPlusEngine. Horizontal scalingmeans that the response
to the increased load is to deploy more pods.
This is different from“vertical”scaling. For kubernetes, vertical scaling means allocating more resources (such as
memory or CPU) to the pod that has been running for the workload.

2.16.4 Limitations

■ At this stage, due to the insufficient indexesof SphereEx‑DBPlusEngine, the stress load test canonlybecarriedout
through the runtime CPU. Other indicators will be added in the future to enrich the runtime pressure calculation
method of SphereEx‑DBPlusEngine.

■ If you want to use the HPA function of SphereEx‑DBPlusEngine in Kubernetes, you need to install metrics‑server
in your cluster and be able to use kubectl top function normally.

■ While creating the SphereEx‑DBPlusEngine cluster, the SphereEx‑Operator will establish load balancing in front
of the SphereEx‑DBPlusEngine cluster. Your application and SphereEx‑DBPlusEngine are linked through load
balancing.

■ Because SphereEx‑DBPlusEngine establishes long links with your application, it will not significantly reduce the
load on the existing long links in the process of scaling‑out. The effect of scaling‑out will only take effect on the
newly established links after scaling‑out.

■ There will also be corresponding problems while scaling‑in. In the process of scaling‑in, your application will
flash, because the reduced SphereEx‑DBPlusEngine copy is in the process of scaling‑in, it will be removed from
the load balance, and the long link between your application and SphereEx‑DBPlusEnginewill also be destroyed.

2.16.5 How it works

The scaling usingHPA is the horizontal scaling of SphereEx‑DBPlusEngine. Horizontal scalingmeans that the response
to the increased load is to deploy more pods.
This is different from“vertical”scaling. For kubernetes, vertical scaling means allocating more resources (such as
memory or CPU) to the pod that has been running for the workload.
If the load is reduced and the number of pods is higher than the configuredminimum value, horizontalpodautoscaler
will indicate that the workload resources (deployment, statefulset, or other similar resources) are reduced.
In the kubernetes cluster, a controller will query the indicators in the HPA created by related resources at a certain
interval. After meeting the threshold of the indicator, the corresponding resources will be scaling‑out or scaling‑in
according to the calculation formula.

65



Beijing SphereEx Technology Co., Ltd.

In the working process of SphereEx‑Operator, HPA object acts on the deployment object of SphereEx‑DBPlusEngine,
and continuously queries the CPU utilization of each copy of SphereEx‑DBPlusEngine.
The CPU utilization of SphereEx‑DBPlusEngine obtains the CPU usage from the container
/sys/fs/cgroup/cpu/cpuacct.usage, and the value set in the automaticScaling.target field in the
shardingsphere.sphere‑ex.com/v1alpha1.proxy is used as the percentage of the threshold value for continuous
calculation.
When the calculated value reaches the threshold, the HPA controller calculates the number of copies according to the
following formula:
Expected number of copies = ceil[Current number of copies * (Current indicators / Expected indicators)]

It is worth noting that the CPU utilization index is the CPU value in the resources.requests field of each copy.
Before checking the tolerance and determining the final value, the control plane will also consider whether any indi‑
cators are missing and howmany pod are ready.
When CPU metrics are used to scale, any pod that is not ready (still initializing, or may be unhealthy) or the latest
indicator measure is collected in the pod before the ready state, the pod will also be shelved.
Schematic diagram:

Fig. 15: HPA

66



Beijing SphereEx Technology Co., Ltd.

2.16.6 Related References

Configuration of Auto Scaling on Cloud

67



Beijing SphereEx Technology Co., Ltd.

3
Technical White Paper

3.1 Industry Trends

Amidst the trend of database fragmentation, DBPlusEngine makes the connection between data and services
easier.
In recent years, driven by newly developing application scenarios, database technology has developed rapidly, and
many excellent products have emerged. As the core of digital infrastructure, database plays an increasingly important
role.
The database architecture of enterprises is graduallymoving towards open source, distributed and cloud. At the same
time, in terms of database categories, enterprises have changed from the original“unified”architecture to today’s
multiple databases. The coexistence of multiple databases has become a normal and irreversible trend.

Twenty years ago, combinedwith the technological development, business complexity and volumeat that time, it was
not difficult for enterprises to choose a commercial database to meet all business scenarios.

68



Beijing SphereEx Technology Co., Ltd.

Nowadays, business development drives architecture transformation, and the“unified”data architecture has been
gradually abandoned by the times.
Under the trend of database fragmentation in IT architecture, we should not only deal with the increasing pressure
from the business side, but also meet the diversified needs in the transformation of enterprise technology route.
Considering the various new challenges faced by the database, we can consider using an efficient and low‑cost way
to enhance the performance of the existing database. At the same time, we can flexibly supplement the functions of
the database in combinationwith the business needs, and try tomake the heterogeneous database transparent to the
upper business. This is one of the best answers.

3.2 Principles

DBPlusEngine adopts the database plus design philosophy, which is committed to building the standards and
ecology of the upper layer of the database and supplementing the missing capabilities of the database in the
ecology.

■ Database Plus: It is the design philosophy of ShardingSphere;
■ ShardingSphere: It is the engineering implementation of Database Plus;
■ DBPlusEngine: It is an enhanced product for enterprise users based on ShardingSphere.

As a guiding concept for creating a distributed database system, Database Plus establishes a new connection relation‑
ship on the database that has shown a trend of fragmentation. This process will provide data enhancement services
in the upper layer of the database without intrusion, such as distribution, data control and flow control.
For the storage layer, the original database technology stack needs to be retained for users, the stability, compatibility
and operation andmaintenance habits have not changed, and the reliability is better guaranteed.
In this way, the application only needs to talk with the standard service layer, and does not need to care about the
differences and capabilities between the underlying databases, forming a closed‑loop ecological environment.

The three core features of Database Plus are connectivity, enhancement, and pluggability. From“point”to“line”,
and finally form an ecological“face”.

69



Beijing SphereEx Technology Co., Ltd.

■ Connect: Create database upper level standard
Connectivity is the foundation“point”of database plus capabilities. That is, in the form of“database gateway”, it
provides a unified database entry for the application system and an intermediate layer that can be adapted to various
database SQL dialects and access protocols. Database plus parses the SQL into AST (abstract syntax tree) and regen‑
erates the SQL according to the rules of other database dialects. It can shield the dialect differences of heterogeneous
databases and the differences of heterogeneous development languages in services.
Upward, supportmultiple development languageswith standard database protocols, so that applications canbe used
smoothly without feeling; Downward, it supports a variety of database products, which not only meet the require‑
ments of multiple development languages in the north, but also support a variety of database products in the south.
At present, it supports MySQL, PostgreSQL, openGauss and other database protocols, as well as MySql, PostgreSQL,
openGauss, SQL Server, Oracle and all SQL dialects that support the SQL92 standard.

■ Enhance: Database computing enhancement engine
Based on the connected“point”, it can be further extended to this enhancement“line”.
The practical experience of traditional databases is the essence precipitated by time andmultiple scenarios. Database
plus breaks through its computing power, capacity and functions on the basis of reusing the storage and native com‑
puting power of databases.
After the traffic enters the gateway, Database Plus enhances the three aspects of distribution, data control and traffic
control through the global capability.
Data sharding, elastic scaling, high availability, read‑write splitting, distributed transactions and Heterogeneous
Database Federation query based on vertical splitting are all enhanced capabilities that Database Plus can provide
to users in a permutation and combination manner at the global level of distributed heterogeneous databases.

■ Pluggable: Building database function ecology
Facing users, Database Plus presents in the form of a“face”, that is, an ecological face.
We can try to understand this“face”as a well‑known App store. You only need to select the required functions from
a large number of plug‑ins. It can be used alone or in combination. Even you can create your own customized plug‑ins
in the App store.
Through the pluggable system, database plus will be able to truly build a database oriented functional ecosystem and
unify the global capabilities of heterogeneous databases. It not only faces the distributed of centralized database, but
also faces the integration of shaft functions of distributed database.
The pluggable feature can not only provide better expansion, but also achieve convergence, and only provide the
content required by users. Ecological borderless, and capacity is pluggable.

3.3 Technical Architecture

3.3.1 Overall Architecture

Thepluggable architecture of DBPlusEngine is divided into three layers: L1 kernel layer, L2 feature layer and L3 ecosys‑
tem layer.
The overall architecture of DBPlusEngine is shown in the following figure.

70



Beijing SphereEx Technology Co., Ltd.

L1 Kernel Layer

An abstraction of basic capabilities of database. All components are required and the specific implementation can be
replaced by pluggable way. It includes query optimizer, distributed transaction engine, distributed execution engine,
authority engine and scheduling engine.

L2 Feature Layer

Used to provide enhanced capability. All components are optional and can contain zero or multiple components.
Components isolate each other andmultiple components can be used together superimposed. It includes data shard‑
ing, readwrite‑splitting, database highly availability, data encryption, shadow database and so on. The user‑defined
feature can be fully customized and extended for the top‑level interface defined by Apache ShardingSphere without
changing kernel codes.

L3 Ecosystem Layer

Used to integrate into the current database ecosystem. It includes database protocol, SQL parser and storage adapter.
The access modes of DBPlusEngine include driver and proxy, namely DBPlusEngine‑Driver and DBPlusEngine‑
Proxy.

71



Beijing SphereEx Technology Co., Ltd.

DBPlusEngine‑Driver

The lightweight Java framework provides additional services in the JDBC layer of Java. It uses the client to connect
directly to the database and provides services in the form of jar packages without additional deployment and depen‑
dency. It can be understood as an enhanced JDBC driver and is fully compatible with JDBC and various ORM frame‑
works.

■ It is applicable to any JDBC based ORM framework, such as JPA, Hibernate, Mybatis, Spring JDBC template or
direct use of JDBC;

■ Support any third‑party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP, etc;
■ It supports any database that implements the JDBC specification. Currently, it supports MySQL, PostgreSQL,

Oracle, SQLServer and any database that can be accessed using JDBC.

DBPlusEngine‑Proxy

The transparent database agent provides a server version that encapsulates the database binary protocol to support
heterogeneous languages. At present, MySQL and PostgreSQL (compatible with openGauss and other PostgreSQL
based databases) are available. It can use any access client compatible with MySQL/PostgreSQL protocol (such as
MySQL Command Client, MySQL Workbench, Navicat and DBeaver) to operate data, which is more friendly to DBAs.

■ It is completely transparent to applications and can be directly used as MySQL/PostgreSQL;
■ Applicable to any client compatible with MySQL/PostgreSQL protocol.

3.3.2 Security System

DBPlusEngine‑Proxy (hereinafter referred to as Proxy) provides a complete security system, taking into account engine
security and data security.

Login Authentication

Proxy has a strict login authentication mechanism. Only authenticated users can successfully establish a connection.
Password Authentication
By default, Proxy uses password authentication. The login user must provide the correct user name and password.
Inparticular, becauseProxy supports a variety of databaseprotocols (suchasMySQL, PostgreSQL, etc.), whenusers ap‑
ply different database clients, Proxy can automatically adapt the password communication protocol to provide users
with a consistent security experience in complex scenarios.
Host Restrictions
The administrator can restrict the login host address for Proxy users to improve the security level. For example:
authority:
users:
‑ user: root@127.0.0.1
password: root

Theaboveconfigurationspecifies that the rootuser canonlyaccess theproxy fromtheaddress127.0.0.1. When logging
in from another address, even if the password is correct, it will be rejected.
LDAP Authentication
To facilitate unified authenticationmanagement for enterprise users, proxy also provides LDAP (Lightweight Directory
Access Protocol) authentication. LDAP authentication now supports MySQL and PostgreSQL clients.
At the same time, Proxy allows users to access LDAP in a very flexible way, such as:

1. It can be configured to use LDAP by default, so that all users can pass LDAP authentication;

72



Beijing SphereEx Technology Co., Ltd.

2. It supports configuring auth attribute for users, specifying that users use password or LDAP authentication. Each
user can use different methods;

3. Each user can use different LDAP authenticators, that is, connect to different LDAP services;
4. It supports specifying DN templates for users to meet the needs of complex scenarios;
5. Support LDAPS protocol, which can further improve the security level.

Security of Management

In DBPlusEngine‑Proxy, users can perform multiple dimension management operations through DistSQL, including
but not limited to:

1. Proxy configuration management, such as transaction type, log switch, etc;
2. Logical database management;
3. Storage resource management;
4. Data sharding rule management;
5. Read write splitting rule management;
6. Encryption and decryption rule management;
7. Database discovery rule management;
8. Shadow rule management;
9. Metadata viewing, etc.

Due to the powerful DistSQL function, the database administrator can assign different DistSQL authorities to different
users to achieve proxy management security. For example:
GRANT DIST SHOW SHARDINGON sharding_db.* TO 'sharding'@'%';

Through theaboveauthorization statement, grant‘sharding@%’theauthorizationof‘viewsharding rules’in the log‑
ical database sharding_db, then the user can execute‘SHOWSHARDINGTABLE RULES’,‘SHOWSHARDINGBINDING
TABLE RULES’and other sharding related RQLs in sharding_db, but cannot execute other unauthorized DistSQL.
For example, if the’sharding@%’user executes the CREATE SHARDING TABLE RULE statement at this time, he will
get an exception prompt:
Access denied for operation [CREATE] of subject sharding_db.table_name:SHARDING.]

To grant all DistSQL authorization to the‘sharding@%’user, do the following:
GRANT DIST RDL,RQL,RALON sharding_db.* TO 'sharding'@'%';

Access Security

Data access security is one of the necessary capabilities of enterprise database. As the portal of the distributed
database cluster, DBPlusEngine‑Proxy provides users with comprehensive access control capabilities.
Unlike traditional centralized databases or single protocol databases, DBPlusEngine has the ability to manage multi
type underlying databases and connect multi protocol clients. It will face many challenges in access control:

■ Different database types have different logical concepts;
■ Different database types use different dialects;
■ Different databases provide different storage structures.

In order to provide users with a consistent security experience, Proxy shields the differences of underlying databases
and provides a unified and easy‑to‑use security system, which has the following characteristics:

73



Beijing SphereEx Technology Co., Ltd.

■ Fine granularity authorizationmanagement: support database level, table level and column level access control;
■ Unified interactive language: use DistSQL to manage users and authorizations, which is applicable to different

database protocols;
■ Independent storage: the authorization information is stored in the governance center ofDBPlusEngine anddoes

not depend on the underlying database;
■ Real time effective: the control of users and authorizations takes effect in real time without restart or manual

refresh.
For example, if the administrator grants the‘sharding@%’authorization to query and write to the t_order table in
sharding_db, you can execute distsql as follows:
GRANT DIST SELECT, INSERT ON sharding_db.t_order TO‘sharding’@'%';

After the operation is completed, the‘sharding@%’user will get the corresponding authorization immediately. If
the user performs unauthorized operations, such as DELETE, he will receive a rejection prompt:
=> DELETE FROM sharding_db.t_orderWHERE id = 1;
Access denied for operation [DELETE] of subject sharding_db.t_order]

Storage Security

In recent years, more and more attention has been paid to data security and privacy protection. Dealing with data
encryption and data desensitization has also become an important task formany enterprises. Under such a trend, the
technical team faces new challenges:

■ Is the encryption process on the application side or in the database?
■ In the case of the application side, each project team will have coding tasks, and the later modification of the

algorithmwill also have a great impact;
■ If different databases have different encryption methods in the database, there will be a variety of encryption

methods in the enterprise, which can not be reused well.
To this end, the DBPlusEngine provides a new idea. By supporting configurable encryption rules in the data engine, it
not only simplifies the workload of the development team, but also providesmore general data security services. The
data encryption function in DBPlusEngine has many advantages:

■ No invasion to the application, no need to modify the source code;
■ Widely available, applicable to any database accessed through DBPlusEngine;
■ A variety of encryption algorithms are available, including SHA, SM3, SM4 and other built‑in algorithm support;
■ Flexible customization: users can customize the encryption algorithm according to SPI to meet personalized

needs.
Take the user’smobile number encryption scenario as an example. After the application accesses the DBPlusEngine,
it only needs to define an ENCRYPT RULE through YAML or DistSQL, such as:
CREATE ENCRYPT RULE t_user (
COLUMNS(
(NAME=mobile,CIPHER=mobile,TYPE(NAME="AES",PROPERTIES("aes‑key‑value"="123456abc"'")))));

In this way, when the application writes a new record to the t_user table, the DBPlusEngine will automatically encrypt
themobile field and store the ciphertext content. On the contrary, the ciphertext can also be decrypted automatically
during query, and the query results obtained by the application will be restored to plaintext.
In this way, it not only ensures that the application is insensitive to the data encryption process, but also ensures the
security of the stored data. If a hacker event such as“off database”occurs, only the ciphertext content will be leaked,
and the security risk will be greatly reduced.

74



Beijing SphereEx Technology Co., Ltd.

3.3.3 Architecture Advantages

■ High performance
The driver side has been polished for many years, and its efficiency is close to that of native JDBC, with extreme per‑
formance. Among the mainstream competitive products, only ShardingSphere currently provides the driver access
form.

■ High compatibility
The agent side is applicable to any client compatible with MySQL/PostgreSQL protocol, and the driver side supports
any database that implements JDBC specification.

■ High expansion
In the database replacement scenario, the DBPlusEngine can meet the requirements of smooth business migration
and zero intrusion into business.

■ Low cost
It retains the original database technology stack, is friendly to DBA, and has low learning andmanagement costs.

■ Safe and stable
It does not interfere with the database kernel, and provides increased capacity based on the mature database base,
taking into account security and stability.

■ Elastic extension
With elastic computing and storage capabilities, it canmeet the changing needs of computing and storage layers, and
complete database splitting andmigration online;

■ Open ecology
The pluggable model enables the kernel, functional components and ecological docking to be pluggable and ex‑
panded in a flexible way. Users can customize unique systems suitable for business like building blocks.

3.4 Deployment and Maintenance

3.4.1 Deployment Form

The driver side focuses on performance, while the proxy side is more friendly to operation andmaintenancemanage‑
ment. In terms of deployment mode, mixed use is a better choice.
Both Apache Sharingsphere and theDBPlusEngine based on it are ecosystems composedofmultiple access terminals.

■ DBPlusEngine‑Driver adopts a decentralized architecture, shares resources with applications, and is suitable for
High‑Performance Lightweight OLTP applications developed by Java;

■ DBPlusEngine‑Proxy It provides support for static portals and heterogeneous languages, which is independent
of application deployment. It is suitable for OLAP applications and scenarios of management, operation and
maintenance of sharding databases.

BymixingDBPlusEngine‑Driver andDBPlusEngine‑Proxy, andusing the same registry touniformly configure the shard‑
ing strategy, it can flexibly build application systems suitable for various scenarios, making architects more free to
adjust the best system architecture suitable for the current business.

75



Beijing SphereEx Technology Co., Ltd.

3.4.2 Operation and Maintenance Tool Boot

SphereEx‑Boot tool is a command line tool basedonPython to facilitate themanagement of DBPlusEngine‑Proxy clus‑
ters.
Themain functions of SphereEx‑Boot are to install, uninstall, start, stop, view the running status, and other operations
on DBPlusEngine‑Proxy.

76



Beijing SphereEx Technology Co., Ltd.

3.4.3 Management and Control Tool Console

SphereEx‑Console is a visual operation platform applied to the management and control of DBPlusEngine, providing
amore user‑friendly experience. At the same time, a comprehensive solutionwith ShardingSphere as the core is built,
packaging of multiple functions such as resource layer, instance layer and application layer, to provide users with a
one‑stop solution.

77



Beijing SphereEx Technology Co., Ltd.

78



Beijing SphereEx Technology Co., Ltd.

4
Product White Paper

■ SphereEx‑DBPlusEngine, linking data and services simply
■ SphereEx‑DBPlusEngine Best Practices
■ Use Case: Solve the problemof 100 billion data storage and capacity expansion of an internet financial customer
■ SphereEx‑DBPlusEngine Operation Guide

4.1 WhyWe Created DBPlusEngine

With the advent of digital transformation, the business needs of enterprises iterate rapidly, and the amount of data
and concurrent visits increased exponentially. The traditional relational database face challenges of limited expansion
capacity and low big data processing performance.
Data is becoming more and more important to enterprises. On the one hand, enterprises have increasingly urgent
demand for professional services with database as the core. On the other hand, enterprises are also waiting for the
new database to meet the application needs of different data scenarios.
The database is rapidly evolving. However, due to the complex technical system of enterprise database, the gap be‑
tween various databases is obvious and themanagement is difficult. Controlling cost and improving efficiency are the
long‑term and constant demands of enterprises for the underlying database. Therefore, under the multi‑directional
role, enterprises need service providers to be able to provide horizontal mainstream database products and vertical
multi‑version technical service coverage, to face the demands from insensitive to solve the diversified needs of users
and the common problems on the industry side and form solutions. In this case, the utilization of data and the trans‑
formation of underlying architecture are particularly urgent. It may be a feasible way to improve the flexibility and
scalability of the database and build a component database.
Based on the Database Plus concept proposed by Apache ShardingSphere, SphereEx‑DBPlusEngine promotes the de‑
sign and implementation of Apache ShardingSphere’smicrokernel and pluggable architecturemodel, provides com‑
munity users with lightweight and flexible component open source products, and also provides a unified entrance to
incremental functions for enterprise products.
SphereEx‑DBPlusEngine is not satisfied with the positioning of its database middleware tool, and began to transform
towards platform and ecology. The practice of DatabasePlus makes the SphereEx‑DBPlusEngine not only shield the
underlying details between various databases, but also make up for the differences between various shardings of dis‑
tributed database. Specifically, through the flexible adaptation of database protocol, SQL dialect and database stor‑
age, developers can quickly connect applications with heterogeneous databases, so that developers do not need to
pay attention to the differentiation of SQL dialect and focus on business research and development.
Based on the ecology of this layer of database, SphereEx‑DBPlusEngine takes the database as the final storage node
andmeets various database protocols, SQL dialects and database drop docking at the access end, so as to provide var‑
ious incremental capabilities to the database application architecture on this layer of storage nodes. Therefore, users
can regard SphereEx‑DBPlusEngine as a “database gateway”, which can obtain the access traffic of the database

79



Beijing SphereEx Technology Co., Ltd.

and provide transparent functions such as traffic redirection (data sharding, read‑write splitting, shadow DB), traf‑
fic deformation (data encryption, data desensitization), traffic authentication (security, audit, authority), traffic gov‑
ernance (fusing, flow restriction) and traffic analysis (service quality analysis, observability), these enhancements
make SphereEx‑DBPlusEngine the strongest partner of database products. Users do not need to worry about how
to uniformlymanage various databases. Themainstream authentication and governance functions can be completed
through the expansion of DistSQL.

4.2 Seamlessly Connect Data & Applications: SphereEx‑DBPlusEngine

4.2.1 Overview

Based on the open source kernel of ShardingSphere, DBPlusEngine is encapsulated after adding and enhancing some
enterprise level features. It can provide enterprises with enhanced data service capabilities, including but not limited
to data sharding, data security, etc.
It consists of two products, DBPlusEngine‑Driver and DBPlusEngine‑Proxy, which can be deployed independently and
or concurrently. They all provide standardized horizontal data expansion, distributed transaction, distributed gover‑
nance and other features, which can be applied to various application scenarios such as Java isomorphism, heteroge‑
neous language, cloud native and so on.

4.2.2 Features

DBPlusEngine is positioned as a Database Plus, and aims at building a standard layer and ecosystem above heteroge‑
neous databases. It focuses on how to reuse existing databases and their respective upper layer, rather than creating
a new database. DBPlusEngine stands at the upper level of the database and pays more attention to the cooperation
between them than the database itself.
The concepts at the core of the project are Connect, Enhance and Pluggable.
Connect: flexible adaptation of database protocol, SQL dialect and database storage. It can quickly connect applica‑
tions and heterogeneous databases quickly.
Enhance: capture database access entry to provide additional features transparently, such as: redirect (sharding,
read/write splitting and shadow), transform (data encryption and masking), authentication (security, audit and au‑
thority), governance (circuit breaker and access limitation), and analyze (QoS and observability).
Pluggable: adoptsmicro kernel and 3 layers pluggablemode, so that the kernel, features and database ecosystem can
be embedded flexibily. Developers can customize their ShardingSphere just like building with LEGO blocks.

4.2.3 Product Capability

Refer to Architecture。

4.3 SphereEx‑DBPlusEngine Best Practices

4.3.1 One‑click Deployment

To get startedwith DBPlusEngine‑Proxy, youwill use the SphereEx‑Boot tool, which is a command‑line tool developed
based on Python to facilitate the management of DBPlusEngine‑Proxy clusters.
Its main function is to install, start, stop, view the running status, uninstall and other related management of
DBPlusEngine‑Proxy. With the SphereEx‑Boot tool, you can run any DBPlusEngine‑Proxy cluster component with just
one line of command, greatly reducing the operation andmaintenance cost.

80



Beijing SphereEx Technology Co., Ltd.

The SphereEx‑Boot tool also provides standardized horizontal expansion function, which can dynamically expand the
cluster anytime and anywhere by increasing the number of data servers.

4.3.2 Operation Visualization

SphereEx‑Console is a visual operation platform applied to the management and control of the SphereEx Enterprise
Data Service Platform, providing a more user‑friendly experience. At the same time, a comprehensive solution with
ShardingSphere as the core is built, packaging of multiple functions such as resource layer, instance layer and appli‑
cation layer, to provide users with a one‑stop solution.
Easy to use
It improves the user experience and avoids configuration errors. Users do not need to operate the SphereEx Enter‑
prise Data Service Platform through configuration and commands, which greatly improves ease of use and achieves
platform“zero”bottlenecks.
Comprehensive
Evolving the management capabilities of the open source version, it provides a unified solution for the management
and control of the SphereEx Enterprise Data Service Platform from basic resources to plugin capabilities.
Visual monitoring
With its data visualization&management dashboard, SphereEx Enterprise Data Service Platform’s clusters, instances
and hosts monitoring data are visible online and in real time.

4.3.3 Improve Enterprise Efficiency

■ Efficiency enhancement: enhance the ability of the database without changing the original structure of the cus‑
tomer:

• Obtain the access traffic of the database, and provide transparent incremental functions such as traffic redi‑
rection (data sharding, read‑write splitting, shadow database), traffic deformation (data encryption, data
desensitization), traffic authentication (security, audit, authority), traffic governance (fusing, flow restric‑
tion) and traffic analysis (service quality analysis, observability).

• The project adopts micro kernel + three‑tier pluggable model, so that the kernel, functional components
and ecological docking can be pluggable and expanded in a flexible way, and developers can customize
their own unique system like building blocks.

■ Cost reduction: Based on the original architecture, SphereEx‑DBPlusEngine does not introduce new database
types, which will not increase the learning cost of DBA; Reusing the original architecture will not increase the
procurement cost and greatly reduce the distributed operation andmaintenance and transformation cost of cus‑
tomers.

4.3.4 Support Enterprises Digital Transformation

The data sharding feature of SphereEx‑DBPlusEngine helps enterprises solve the problems of low performance, poor
availability andhigh operation andmaintenance cost in the scenarioswithmassive data using a solution of centralized
storage of data to a single node in the process of digitization.

■ In terms of performance, most relational databases use B + tree indexes. When the amount of data exceeds the
threshold, the increase of index depth will also increase the IO times of disk access, resulting in the decline of
query performance. At the same time, high concurrent access requests also make the centralized database the
biggest bottleneck of the system.

■ In terms of availability, the stateless nature of service can achieve the random expansion at a small cost, which
will inevitably lead to the final pressure of the system falling on the database. A single data node, or a simple
primary‑secondary architecture, has become more and more difficult to bear. The availability of database has
become the key of the whole system.

81



Beijing SphereEx Technology Co., Ltd.

■ In terms of operation andmaintenance cost, when the data in a database instance reaches above the threshold,
the operation and maintenance pressure on DBA will increase. The time cost of data backup and recovery will
become more and more uncontrollable with the amount of data. Generally speaking, the data threshold of a
single database instance is within 1TB, which is a reasonable range.

When the traditional relational database cannot meet the needs of Internet scenarios, there are more and more at‑
tempts to store data in native NoSQL that supports distributed. However, the incompatibility of NoSQL with SQL and
the imperfection of ecosystemmake themunable to complete a fatal blow in the gamewith relational database, while
the position of relational database is still unshakable.
Data sharding refers to the decentralized storage of data stored in a single database in multiple databases or tables
according to a certain dimension, to improve the performance bottleneck and availability. The effectivemeans of data
sharding is to divide the relational database into database and table. Both sub database and sub table can effectively
avoid the query bottleneck caused by the amount of data exceeding the acceptable threshold. In addition, the sub
database can also be used to effectively disperse the number of visits to a single point of the database.
Although split tables cannot alleviate the pressure of database, they can provide the possibility to transform dis‑
tributed transactions into local transactions asmuchaspossible. Once crossdatabaseupdateoperations are involved,
distributed transactions often complicate the problem. Using multi master and multi slave sharding can effectively
avoid single point of data, so as to improve the availability of data architecture.
SphereEx‑DBPlusEngine keeps the data volume of each table below the threshold through data splitting by database
and table, anddredges the traffic todealwithhighaccess volume. It is aneffectivemeans todealwithhighconcurrency
andmassive data systems.

4.4 Case study: solvingafintechuser’sdata storageandexpansionwithhun‑
dreds of billions of rows

4.4.1 Customer Pain Points

To cope with the rapid development of business and the surge of massive amounts of data, data architectures have
evolved several times. Nevertheless, with the product upgrade iteration, the earlier solution became an immediate
problem. The data sharding scheme achieved through the business framework led to the increase of business code
complexity, risingmaintenance costs and thedisadvantagesof tight coupling. Eachapplicationupgrade requiresmore
energy to accordingly adjust the sharding, making it is difficult for R & D teams to focus on the business itself. After
lengthy consideration, the technical team began to consider using mature sub database and sub table components
to undertake this part of the work, so that the business system upgrade and architecture adjustment are no longer
complex.

4.4.2 Customer Research

The comparisonbetweenShardingSpherebased sharding and self‑developed frameworkbased sharding is as follows:

sharding based on self‑developed frame sharding based on DBPlusEngine
Performance High High
Code coupling High Low
Business intrusion degree High Low
Upgrade difficulty High Low
Expansibility Commonly Good

Advantages of DBPlusEngine: 1. Mature and stable products 2. Ultimate performance 3. Processing massive data 4.
Flexible extension of Architecture

82



Beijing SphereEx Technology Co., Ltd.

4.4.3 Customer Transformation and Architecture

SphereEx‑DBPlusEnginehasprovidedmore support and improvement to the functionandperformanceof theproduct
in the process of landing the Internet financial business of the main customers, and the product has experienced the
polishing of typical cases again.

1. Upgrade SQL engine
2. Distributed primary key
3. Business sharding key value injection
4. SQL parsing result cache
5. JDBCmetadata information cache
6. Use of bind table and broadcast table
7. Automatic execution engine and streammerging

Through the cooperation of the two teams, the indicators of the combination of the customer’s Internet financial
business and SphereEx‑DBPlusEngine meet the expectations, and the performance is almost consistent with that of
native JDBC.
The reconstructed structure is as follows:

Fig. 1: Architecture

83



Beijing SphereEx Technology Co., Ltd.

4.5 Service Guarantee

4.5.1 Service Feedback

SphereExhasaprofessional aftersales service teamtoprovideyouwith industry leadingaftersales service. Thecontact
information can be found at contact us。

4.6 SphereEx‑DBPlusEngine Operation Guide

Refer to Quick Start。

84

https://sphere-ex.com/en/about/#contact


Beijing SphereEx Technology Co., Ltd.

5
Performance White Paper

This document showcases the performance results of our products in benchmark tests and scenario tests.
Users can refer to this document for information about product performance and technology selection.
As the kernel and features code continue to be optimized, the benchmark test results cannot represent the optimal
performance. The documentswill also be updated in tandemwith the code. If you’d like to evaluate the performance
of our products, you can follow the test methodology below.

5.1 TPC‑C Benchmark Test

TPC‑C test scenario simulates how the online e‑commerce transaction works.
Suppose there’s a large commodity wholesaler and its businesses stretch acrossmultiple districts and aremanaged
through warehouses. When its business expands, the company will add newwarehouses.
Each warehouse supplies 10 areas and each area serves 3,000 customers. All its warehouses maintain and record the
stock of the 100,000 items the company is selling.
Each customer order includes 10 order lines on average. And around 1% of the order lines are out of stock in the
warehouses they belong to, which have to be supplied by other warehouses.
Customers issue new orders to the company’s system or query their order status in the system.
The system is also used to deal with payments and orders that have been delivered, examining the stock to find po‑
tential supply insufficiency.
The following figure illustrates the relationships betweenwarehouses, districts, and customers.

85



Beijing SphereEx Technology Co., Ltd.

5.1.1 Test Plan A: performance test with a single storage node and a computing node

Use BenchmarkSQL to test DBPlusEngine‑Proxy and DBPlusEngine‑Driver with a single storage node and compare
their performance with MySQL’s.

86



Beijing SphereEx Technology Co., Ltd.

Test Objective

BenchmarkSQL stress testing model is used to compare the performance of DBPlusEngine‑Proxy, DBPlusEngine‑
Driver, and MySQL with the same amount of data so that users can have a detailed understanding of the performance
of DBPlusEngine‑Proxy and DBPlusEngine‑Driver.

Test Tool

BenchmarkSQL is a typical open‑source database test tool with embedded TPC‑C test scripts, which can test Post‑
greSQL, MySQL, Oracle, SQL Server, and other databases.

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
DBPlusEngine‑Driver 192.168.xx.24 1.2

-

MySQL 192.168.xx.20 13306 8.0.29

Server Configuration

87



Beijing SphereEx Technology Co., Ltd.

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Test Procedure

1. Create a test database.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

2. Install test tools.
wget https://udomain.dl.sourceforge.net/project/benchmarksql/benchmarksql‑5.0.zip
yum ‑y install ant
unzip benchmarksql‑5.0.zip ‑d /usr/local
cd /usr/local/benchmarksql‑5.0
ant
cp mysql‑connector‑java‑8.0.24.jar benchmarksql‑5.0/run/lib

Create props.proxy file.
db=postgres
driver=com.mysql.jdbc.Driver
conn=jdbc:mysql://192.168.xx.25:3307/sharding_db?useSSL=false&useServerPrepStmts=true&cachePrepStmts=true&
prepStmtCacheSize=8192&prepStmtCacheSqlLimit=8000
user=root
password=root
warehouses=200
loadWorkers=100
terminals=200
runTxnsPerTerminal=0
runMins=10
limitTxnsPerMin=0
terminalWarehouseFixed=true
newOrderWeight=45
paymentWeight=43
orderStatusWeight=4
deliveryWeight=4
stockLevelWeight=4
resultDirectory=my_result_%tY‑%tm‑%td_%tH%tM%tS
shardingNumber=1

3. YAML
rules:
‑ !SHARDING
bindingTables:
‑ bmsql_warehouse, bmsql_customer
‑ bmsql_stock, bmsql_district, bmsql_order_line
defaultDatabaseStrategy:
none:
defaultTableStrategy:
none:
keyGenerators:
snowflake:

88



Beijing SphereEx Technology Co., Ltd.

type: SNOWFLAKE
tables:
bmsql_config:
actualDataNodes: ds_0.bmsql_config

bmsql_warehouse:
actualDataNodes: ds_${0..0}.bmsql_warehouse
databaseStrategy:
standard:
shardingColumn: w_id
shardingAlgorithmName: mod_1

bmsql_district:
actualDataNodes: ds_${0..0}.bmsql_district
databaseStrategy:
standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_1

bmsql_customer:
actualDataNodes: ds_${0..0}.bmsql_customer
databaseStrategy:
standard:
shardingColumn: c_w_id
shardingAlgorithmName: mod_1

bmsql_item:
actualDataNodes: ds_${0..0}.bmsql_item
databaseStrategy:
standard:
shardingColumn: i_id
shardingAlgorithmName: mod_1

bmsql_history:
actualDataNodes: ds_${0..0}.bmsql_history
databaseStrategy:
standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_1

bmsql_oorder:
actualDataNodes: ds_${0..0}.bmsql_oorder
databaseStrategy:
standard:
shardingColumn: o_w_id
shardingAlgorithmName: mod_1

bmsql_stock:
actualDataNodes: ds_${0..0}.bmsql_stock
databaseStrategy:
standard:
shardingColumn: s_w_id
shardingAlgorithmName: mod_1

bmsql_new_order:
actualDataNodes: ds_${0..0}.bmsql_new_order
databaseStrategy:
standard:
shardingColumn: no_w_id
shardingAlgorithmName: mod_1

bmsql_order_line:
actualDataNodes: ds_${0..0}.bmsql_order_line
databaseStrategy:

89



Beijing SphereEx Technology Co., Ltd.

standard:
shardingColumn: ol_w_id
shardingAlgorithmName: mod_1

shardingAlgorithms:
mod_1:
type: MOD
props:
sharding‑count: 1

4. Obtain data
Initialize the database, create tables through Proxy and insert data.
cd /usr/local/benchmarksql/run

./runDatabaseDestroy.sh props.proxy

./runDatabaseBuild.sh props.proxy

5. Carry out stress testing.
./runBenchmark.sh props.proxy

Test Result

Test Object tpmC
MySQL 180,300
DBPlusEngine‑Proxy 122,299
DBPlusEngine‑Driver 175,392

90



Beijing SphereEx Technology Co., Ltd.

Result: with a single storage node, DBPlusEngine‑Driver is slightly lower than MySQL and higher than DBPlusEngine‑
Proxy in terms of performance.

Monitoring Information

BenchmarkSQL——> MySQL

■ MySQL

91



Beijing SphereEx Technology Co., Ltd.

BenchmarkSQL——> Proxy——> MySQL

■ MySQL

■ Proxy

BenchmarkSQL——> Driver——> MySQL

■ MySQL

■ Driver

92



Beijing SphereEx Technology Co., Ltd.

Glossary

Warehouses: the number of warehouses, which determines the amount of data.
Terminals: the number of threads
runMins: test duration
tpmC: transactions per min

5.1.2 Test Plan B: Scale‑out the storage node

Use the BenchmarkSQL tool to carry out stress testing on two and four storage nodes respectively.

93



Beijing SphereEx Technology Co., Ltd.

Test Objective

With the same amount of data, the BenchmarkSQL stress testing model is used to compare the results of
DBPlusEngine‑Proxy with two or four storage nodes. By analyzing the results, it’s easier for users to understand
the advantages of sharding scenarios.

Test Tool

BenchmarkSQL

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
MySQL 192.168.xx.20 13306 8.0.29
MySQL 192.168.xx.21 13306 8.0.29
MySQL 192.168.xx.22 13306 8.0.29
MySQL 192.168.xx.23 13306 8.0.29

Server Configuration

94



Beijing SphereEx Technology Co., Ltd.

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Test Procedure

1. Create a test table.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

mysql ‑utest ‑h192.168.xx.21 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

mysql ‑utest ‑h192.168.xx.22 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

mysql ‑utest ‑h192.168.xx.23 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

2. Install test tools.
wget https://udomain.dl.sourceforge.net/project/benchmarksql/benchmarksql‑5.0.zip
yum ‑y install ant
unzip benchmarksql‑5.0.zip ‑d /usr/local
cd /usr/local/benchmarksql‑5.0
ant
cp mysql‑connector‑java‑8.0.24.jar benchmarksql‑5.0/run/lib

Create props.proxy file.
db=postgres
driver=com.mysql.jdbc.Driver
conn=jdbc:mysql://192.168.xx.25:3307/sharding_db?useSSL=false&useServerPrepStmts=true&cachePrepStmts=true&
prepStmtCacheSize=8192&prepStmtCacheSqlLimit=8000
user=root
password=root
warehouses=200
loadWorkers=100
terminals=200
runTxnsPerTerminal=0
runMins=10
limitTxnsPerMin=0
terminalWarehouseFixed=true
newOrderWeight=45

95



Beijing SphereEx Technology Co., Ltd.

paymentWeight=43
orderStatusWeight=4
deliveryWeight=4
stockLevelWeight=4
resultDirectory=my_result_%tY‑%tm‑%td_%tH%tM%tS
shardingNumber=2

3. YAML
rules:
‑ !SHARDING
bindingTables:
‑ bmsql_warehouse, bmsql_customer
‑ bmsql_stock, bmsql_district, bmsql_order_line
defaultDatabaseStrategy:
none:
defaultTableStrategy:
none:
keyGenerators:
snowflake:
type: SNOWFLAKE

tables:
bmsql_config:
actualDataNodes: ds_0.bmsql_config

bmsql_warehouse:
actualDataNodes: ds_${0..1}.bmsql_warehouse
databaseStrategy:
standard:
shardingColumn: w_id
shardingAlgorithmName: mod_2

bmsql_district:
actualDataNodes: ds_${0..1}.bmsql_district
databaseStrategy:
standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_2

bmsql_customer:
actualDataNodes: ds_${0..1}.bmsql_customer
databaseStrategy:
standard:
shardingColumn: c_w_id
shardingAlgorithmName: mod_2

bmsql_item:
actualDataNodes: ds_${0..1}.bmsql_item
databaseStrategy:
standard:
shardingColumn: i_id
shardingAlgorithmName: mod_2

bmsql_history:
actualDataNodes: ds_${0..1}.bmsql_history
databaseStrategy:
standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_2

bmsql_oorder:
actualDataNodes: ds_${0..1}.bmsql_oorder
databaseStrategy:
standard:

96



Beijing SphereEx Technology Co., Ltd.

shardingColumn: o_w_id
shardingAlgorithmName: mod_2

bmsql_stock:
actualDataNodes: ds_${0..1}.bmsql_stock
databaseStrategy:
standard:
shardingColumn: s_w_id
shardingAlgorithmName: mod_2

bmsql_new_order:
actualDataNodes: ds_${0..1}.bmsql_new_order
databaseStrategy:
standard:
shardingColumn: no_w_id
shardingAlgorithmName: mod_2

bmsql_order_line:
actualDataNodes: ds_${0..1}.bmsql_order_line
databaseStrategy:
standard:
shardingColumn: ol_w_id
shardingAlgorithmName: mod_2

shardingAlgorithms:
mod_2:
type: MOD
props:
sharding‑count: 2

4. Obtain data.
Initialize the database, create tables through Proxy and insert data.
cd /usr/local/benchmarksql/run

./runDatabaseDestroy.sh props.proxy

./runDatabaseBuild.sh props.proxy

5. Carry out stress testing.
./runBenchmark.sh props.proxy

Test Result

Test Object Storage Node AVG(CPU Load) tpmC
DBPlusEngine‑Proxy(1 storage node) 73% 122,299
DBPlusEngine‑Proxy(2 storage nodes) 30% 122,580
DBPlusEngine‑Proxy(4 storage nodes) 12.5% 128,035

97



Beijing SphereEx Technology Co., Ltd.

Result: with one Proxy node plus one storage node, it can be seen that the performance bottleneck is located on the
CPU of the Proxy server. Therefore, scaling out the storage node only witnessed a slight improvement in performance,
and its advantage lies in the decrease of the CPU load of each storage node.
The result is for reference only. Users can carry out a test based on actual business scenarios.

Monitoring Information

BenchmarkSQL——> Proxy——> MySQL(1)

■ MySQL

■ Proxy

98



Beijing SphereEx Technology Co., Ltd.

BenchmarkSQL——> Proxy——> MySQL(2)

■ MySQL(1)

■ MySQL(2)

■ Proxy

99



Beijing SphereEx Technology Co., Ltd.

BenchmarkSQL——> Proxy——> MySQL(4)

■ MySQL(1)

■ MySQL(2)

■ MySQL(3)

100



Beijing SphereEx Technology Co., Ltd.

■ MySQL(4)

■ Proxy

Glossary

Warehouses: the number of warehouses, which determines the amount of data.
Terminals: the number of threads.
runMins: test duration.
tpmC: transactions per min.

101



Beijing SphereEx Technology Co., Ltd.

5.1.3 Test Plan C: Scale‑out the computing node.

Use BenchmarkSQL tools to carry out stress testing on four storage nodes with one computing node and two comput‑
ing nodes respectively.

Test Objective

With the same amount of data, the BenchmarkSQL stress testing model is used to compare the performance of
DBPlusEngine‑Proxy under four storage nodes with one or two computing nodes. By analyzing the results, it’s easier
for users to understand the advantages of computing node scale‑out.

102



Beijing SphereEx Technology Co., Ltd.

Test Tool

BenchmarkSQL

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
DBPlusEngine‑Proxy 192.168.xx.19 3307 1.2
MySQL 192.168.xx.20 13306 8.0.29
MySQL 192.168.xx.21 13306 8.0.29
MySQL 192.168.xx.22 13306 8.0.29
MySQL 192.168.xx.23 13306 8.0.29

Server Configuration

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Test Procedure

1. Create a test table.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

mysql ‑utest ‑h192.168.xx.21 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

mysql ‑utest ‑h192.168.xx.22 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

mysql ‑utest ‑h192.168.xx.23 ‑P13306 ‑p

DROP DATABASE IF EXISTS test_tpcc;

CREATE DATABASE IF NOT EXISTS test_tpcc;

2. Install test tools.
wget https://udomain.dl.sourceforge.net/project/benchmarksql/benchmarksql‑5.0.zip
yum ‑y install ant
unzip benchmarksql‑5.0.zip ‑d /usr/local

103



Beijing SphereEx Technology Co., Ltd.

cd /usr/local/benchmarksql‑5.0
ant
cp mysql‑connector‑java‑8.0.24.jar benchmarksql‑5.0/run/lib

Create props.proxy file.
db=postgres
driver=com.mysql.jdbc.Driver
conn=jdbc:mysql://192.168.xx.25:3307/sharding_db?useSSL=false&useServerPrepStmts=true&cachePrepStmts=true&
prepStmtCacheSize=8192&prepStmtCacheSqlLimit=8000
user=root
password=root
warehouses=200
loadWorkers=80
terminals=200
runTxnsPerTerminal=0
runMins=10
limitTxnsPerMin=0
terminalWarehouseFixed=true
newOrderWeight=45
paymentWeight=43
orderStatusWeight=4
deliveryWeight=4
stockLevelWeight=4
resultDirectory=my_result_%tY‑%tm‑%td_%tH%tM%tS
shardingNumber=4
connBalance=192.168.xx.25:3333,192.168.xx.19:3333

3. YAML
rules:
‑ !SHARDING
bindingTables:
‑ bmsql_warehouse, bmsql_customer
‑ bmsql_stock, bmsql_district, bmsql_order_line
defaultDatabaseStrategy:
none:
defaultTableStrategy:
none:
keyGenerators:
snowflake:
type: SNOWFLAKE

tables:
bmsql_config:
actualDataNodes: ds_0.bmsql_config

bmsql_warehouse:
actualDataNodes: ds_${0..3}.bmsql_warehouse
databaseStrategy:
standard:
shardingColumn: w_id
shardingAlgorithmName: mod_4

bmsql_district:
actualDataNodes: ds_${0..3}.bmsql_district
databaseStrategy:
standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_4

bmsql_customer:
actualDataNodes: ds_${0..3}.bmsql_customer
databaseStrategy:
standard:

104



Beijing SphereEx Technology Co., Ltd.

shardingColumn: c_w_id
shardingAlgorithmName: mod_4

bmsql_item:
actualDataNodes: ds_${0..3}.bmsql_item
databaseStrategy:
standard:
shardingColumn: i_id
shardingAlgorithmName: mod_4

bmsql_history:
actualDataNodes: ds_${0..3}.bmsql_history
databaseStrategy:
standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_4

bmsql_oorder:
actualDataNodes: ds_${0..3}.bmsql_oorder
databaseStrategy:
standard:
shardingColumn: o_w_id
shardingAlgorithmName: mod_4

bmsql_stock:
actualDataNodes: ds_${0..3}.bmsql_stock
databaseStrategy:
standard:
shardingColumn: s_w_id
shardingAlgorithmName: mod_4

bmsql_new_order:
actualDataNodes: ds_${0..3}.bmsql_new_order
databaseStrategy:
standard:
shardingColumn: no_w_id
shardingAlgorithmName: mod_4

bmsql_order_line:
actualDataNodes: ds_${0..3}.bmsql_order_line
databaseStrategy:
standard:
shardingColumn: ol_w_id
shardingAlgorithmName: mod_4

shardingAlgorithms:
mod_4:
type: MOD
props:
sharding‑count: 4

4. Obtain data.
Initialize the database, create tables through Proxy and insert data.
cd /usr/local/benchmarksql/run

./runDatabaseDestroy.sh props.proxy

./runDatabaseBuild.sh props.proxy

5. Carry out stress testing.

105



Beijing SphereEx Technology Co., Ltd.

./runBenchmark.sh props.proxy

Test Result

Test Object tpmC Storage Node AVG(CPU
Load)

Computing Node AVG(CPU
Load)

4 storage nodes + 1 DB PlusEngine‑
Proxy

128,035 12.5% 98%

4 storage nodes + 2 DB PlusEngine‑
Proxy

244,837 28% 78%

106



Beijing SphereEx Technology Co., Ltd.

107



Beijing SphereEx Technology Co., Ltd.

Result: scaling out computing nodes can improve the overall throughput linearly.

Monitoring Information

BenchmarkSQL——> Proxy——> MySQL(4)

■ MySQL(1)

■ MySQL(2)

108



Beijing SphereEx Technology Co., Ltd.

■ MySQL(3)

■ MySQL(4)

■ Proxy

109



Beijing SphereEx Technology Co., Ltd.

BenchmarkSQL——> Proxy(2)——> MySQL(4)

■ MySQL(1)

■ MySQL(2)

■ MySQL(3)

110



Beijing SphereEx Technology Co., Ltd.

■ MySQL(4)

■ Proxy(1)

■ Proxy(2)

111



Beijing SphereEx Technology Co., Ltd.

Glossary

Warehouses: the number of warehouses, which determines the amount of data.
Terminals: the number of threads.
runMins: test duration.
tpmC: transactions per min.

5.2 Data Integration Test

5.2.1 Test Plan A: Data Export

Datamigration. Migrate 36 gigabytes of data (140million lines) froma single database and table into the target source.

112



Beijing SphereEx Technology Co., Ltd.

Test Objective

Once the data reaches a large amount, databases’performance will decrease notably, affecting the read/write oper‑
ations. We can use DBPlusEngine‑Proxy’s scaling feature to migrate the original data to multiple target databases
without affecting the business operations.

Test Tool

Sysbench

Test Environment

Application IP Address Port
DBPlusEngine‑Proxy 192.168.xx.25 3307
MySQL 192.168.xx.20 13306
MySQL 192.168.xx.21 13306
MySQL 192.168.xx.22 13306
MySQL 192.168.xx.23 13306
MySQL 192.168.xx.24 13306

Server Configuration

113



Beijing SphereEx Technology Co., Ltd.

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Test Procedure

1. Create a test table.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTSmigration_ds_0;

CREATE DATABASE IF NOT EXISTSmigration_ds_0;

mysql ‑utest ‑h192.168.xx.21 ‑P13306 ‑p

DROP DATABASE IF EXISTSmigration_ds_1;

CREATE DATABASE IF NOT EXISTSmigration_ds_1;

mysql ‑utest ‑h192.168.xx.22 ‑P13306 ‑p

DROP DATABASE IF EXISTSmigration_ds_2;

CREATE DATABASE IF NOT EXISTSmigration_ds_2;

mysql ‑utest ‑h192.168.xx.23 ‑P13306 ‑p

DROP DATABASE IF EXISTSmigration_ds_3;

CREATE DATABASE IF NOT EXISTSmigration_ds_3;

mysql ‑utest ‑h192.168.xx.24 ‑P13306 ‑p

DROP DATABASE IF EXISTSmigration_ds_4;

CREATE DATABASE IF NOT EXISTSmigration_ds_4;

mysql ‑uroot ‑h192.168.xx.25 ‑P3307 ‑proot

DROP DATABASE IF EXISTS sphereex_demo;

CREATE DATABASE IF NOT EXISTS sphereex_demo;

2. Install test tools.
tar ‑xzvf sysbench‑1.0.20.tar.gz ‑C /usr/local
cd /usr/local/sysbench‑1.0.20
./autogen.sh
./configure
make &&make install

3. Obtain data.
Use the Sysbench tool to insert 140 million pieces of data into the source database.

114



Beijing SphereEx Technology Co., Ltd.

sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.20' ‑‑mysql‑port=13306 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=migration_ds_0 ‑‑tables=1 ‑‑table‑size=140000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=256 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off cleanup

sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.20' ‑‑mysql‑port=13306 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=migration_ds_0 ‑‑tables=1 ‑‑table‑size=140000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=256 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off prepare

4. Migration Procedure.
Create a new logical database and configure resources and rules through Proxy.
mysql ‑uroot ‑h 192.168.xx.25 ‑P3307 ‑proot

CREATE DATABASE sphereex_demo;

USE sphereex_demo;

REGISTER STORAGE UNIT ds_0 (
URL="jdbc:mysql://192.168.xx.20:13306/migration_ds_0?serverTimezone=UTC&useSSL=false",
USER="test",
PASSWORD="test",
PROPERTIES("maximumPoolSize"=500,"idleTimeout"=60000)

);

Add target sources.
REGISTER STORAGE UNIT ds_1 (
URL="jdbc:mysql://192.168.xx.21:13306/migration_ds_1?serverTimezone=UTC&useSSL=false",
USER="test",
PASSWORD="test",
PROPERTIES("maximumPoolSize"=50,"idleTimeout"="60000")

), ds_2 (
URL="jdbc:mysql://192.168.xx.22:13306/migration_ds_2?serverTimezone=UTC&useSSL=false",
USER="test",
PASSWORD="test",
PROPERTIES("maximumPoolSize"=50,"idleTimeout"="60000")

), ds_3 (
URL="jdbc:mysql://192.168.xx.23:13306/migration_ds_3?serverTimezone=UTC&useSSL=false",
USER="test",
PASSWORD="test",
PROPERTIES("maximumPoolSize"=50,"idleTimeout"="60000")

), ds_4 (
URL="jdbc:mysql://192.168.xx.24:13306/migration_ds_4?serverTimezone=UTC&useSSL=false",
USER="test",
PASSWORD="test",
PROPERTIES("maximumPoolSize"=50,"idleTimeout"="60000")

);

Create rules.
CREATE SHARDING TABLE RULE sbtest1(
STORAGE_UNITS(ds_1,ds_2,ds_3,ds_4),
SHARDING_COLUMN=id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"=4)),
KEY_GENERATE_STRATEGY(COLUMN=id,TYPE(NAME="snowflake"))
);

Add the migration configuration.
ALTERMIGRATION RULE (
READ(
WORKER_THREAD=40,
BATCH_SIZE=1000,

115



Beijing SphereEx Technology Co., Ltd.

SHARDING_SIZE=7000000
),
WRITE(
WORKER_THREAD=40,
BATCH_SIZE=1000
)
);

Configure source resources.
REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://192.168.xx.20:13306/migration_ds_0?serverTimezone=UTC&useSSL=false",
USER="test",
PASSWORD="test",
PROPERTIES("maximumPoolSize"=50,"idleTimeout"="60000")

);

Start executing the task.
MIGRATE TABLE ds_0.sbtest1 INTO sbtest1;

Test Result

Themigration process takes 10 mins 49 s.
Test result: the computing node reaches the bottleneck first under the above configuration.

Monitoring Information

Source DB

DBPlusEngine‑Proxy

116



Beijing SphereEx Technology Co., Ltd.

One of target DB

Glossary

Id: id of the migration task.
tables: name of the table to be migrated.
sharding_total_count: number of the source tables.
active: indicates whether the migration task is running. If it’s false, the migration task is disabled and will not run
again.
create_time: the start time of the migration task.
stop_time: the end time of the migration task.

5.2.2 Test Plan B: Data Import

Use JMH and DBPlusEngine‑Driver to insert data into databases and tables. The insertion duration is 5 mins and the
amount of data inserted is counted.
UseJMHto insert data intoMySQLdirectly. The insertionduration is 5minsand theamountof data inserted is counted.

117



Beijing SphereEx Technology Co., Ltd.

Test Objective

By comparing the two ways of importing data, we can:
■ Work out the performance indicator of DBPlusEngine‑Driver.
■ Compare this with the performance loss of MySQL native import.

Test Tool

JMH

Test Environment

Application IP Address Port Version
DBPlusEngine‑Driver 192.168.xx.24 3307 1.2
MySQL 192.168.xx.20 13306 8.0.29

Server Configuration

118



Beijing SphereEx Technology Co., Ltd.

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Key parameters ‑ –Dtables=1: quantity. ‑ ‑f 1: executions. ‑ ‑r 300: execution time. ‑ ‑t 200: number of threads used. ‑
‑w 0: number of warm‑ups.

Test Procedure

1. Create a test database.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP SCHEMA IF EXISTS insert_db;

CREATE TABLE `sbtest1` (
`id` int unsignedNOT NULL AUTO_INCREMENT,
`k` intNOT NULL DEFAULT '0',
`c` char(255)NOT NULL DEFAULT '',
`pad` char(60)NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)
) ENGINE=InnoDB AUTO_INCREMENT=1;

2. Install test tools.
Note: users have to configure JAVA and MAVEN environments in advance. openjdk 17.0.2 and Maven 3.6.3 are used in
the following example.
Establish DBPlusEngine‑Driver.
Users can write their own test cases based on the JMH framework or compile the test case set using the following
codes.
git clone https://github.com/SphereEx‑QE/database‑jmh.git
cd database‑jmh/jmh‑shardingsphere5
mvn clean package && cd target

testssj.yaml configuration:
dataSources:
write_ds:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://192.168.xx.20:13306/insert_db?serverTimezone=UTC&useSSL=false&useUnicode=true&

characterEncoding=UTF‑8
username: root
password: root
maximumPoolSize: 300
minimumIdle: 1

rules: []
props:

mysql.properties configuration:
jdbc‑url=jdbc:mysql://192.168.xx.21:13306/pure_mysql?serverTimezone=UTC&useSSL=false&useUnicode=true&
characterEncoding=UTF‑8
username=root
password=root

119



Beijing SphereEx Technology Co., Ltd.

3. 3. Perform the test.
Transfer the path parameter of test.yaml and other JMH parameters using the following commands (Appendix).
# If you'd like to learn about JMH parameters, you can run ‑help after the following commands.
java ‑classpath 'dependency/*:jmh‑shardingsphere5‑1.0‑SNAPSHOT.jar' ‑Dshardingsphere.configurationFile=/root/testssj.yaml ‑
Dtables=1 org.openjdk.jmh.Main "com.sphereex.jmh.shardingsphere5.ShardingSphereInsertOnlyBenchmark" ‑f 1 ‑i1 ‑r200 ‑t 100
‑wi 0
java ‑classpath 'dependency/*:jmh‑jdbc‑1.0‑SNAPSHOT.jar' ‑Dconf=/root/mysql.properties ‑Dtables=1 org.openjdk.jmh.Main
"com.sphereex.jmh.jdbc.UnpooledReadOnlyBenchmarkJDBC" ‑f 1 ‑i1 ‑r200 ‑t 100 ‑wi 0

Test Result

Test Object TPS Rows Count
DBPlusEngine‑Driver 46,055 13,821,323
MySQL 46,402 13,909,701

120



Beijing SphereEx Technology Co., Ltd.

Result: by comparing the imports ofDBPlusEngine‑Driver andMySQL, it turns out that there’s hardly anyperformance
loss for DBPlusEngine‑Driver.
The result is for reference only. Users can carry out a test based on actual business scenarios.

Monitoring Information

DBPlusEngine‑Driver

MySQL

121



Beijing SphereEx Technology Co., Ltd.

Glossary

TPS: transaction per second

5.3 Business Performance Test

Provide a universal method for the user‑end test.

5.3.1 Data Sharding

Data sharding test scenarios.

122



Beijing SphereEx Technology Co., Ltd.

Test Objective

Use DBPlusEngine‑Proxy’s sharding rules to route and distribute data to corresponding databases and tables. Also
use the sysbench tool to carry out stress testing on read/write scenarios, to obtain the performance indicator of the
sharding feature.

Test Tool

Sysbench

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
MySQL 192.168.xx.20 13306 8.0.29
MySQL 192.168.xx.21 13306 8.0.29
MySQL 192.168.xx.22 13306 8.0.29
MySQL 192.168.xx.23 13306 8.0.29

Server Configuration

123



Beijing SphereEx Technology Co., Ltd.

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Test Procedure

1. Create a test database.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTS sbtest;

CREATE DATABASE IF NOT EXISTS sbtest;

mysql ‑utest ‑h192.168.xx.21 ‑P13306 ‑p

DROP DATABASE IF EXISTS sbtest;

CREATE DATABASE IF NOT EXISTS sbtest;

mysql ‑utest ‑h192.168.xx.22 ‑P13306 ‑p

DROP DATABASE IF EXISTS sbtest;

CREATE DATABASE IF NOT EXISTS sbtest;

mysql ‑utest ‑h192.168.xx.23 ‑P13306 ‑p

DROP DATABASE IF EXISTS sbtest;

CREATE DATABASE IF NOT EXISTS sbtest;

Create a logical database.
mysql ‑uroot ‑h192.168.xx.25 ‑P3307 ‑proot

DROP DATABASE IF EXISTS sharding_db;

CREATE DATABASE IF NOT EXISTS sharding_db;

Associate the data source through DistSQL.
REGISTER STORAGE UNIT ds_0 (
HOST="192.168.xx.20",
PORT=13306,
DB="sbtest",
USER="test",
PASSWORD="test"

), ds_1 (
HOST="192.168.xx.21",
PORT=13306,
DB="sbtest",
USER="test",
PASSWORD="test"

) , ds_2 (
HOST="192.168.xx.22",

124



Beijing SphereEx Technology Co., Ltd.

PORT=13306,
DB="sbtest",
USER="test",
PASSWORD="test"

) , ds_3 (
HOST="192.168.xx.23",
PORT=13306,
DB="sbtest",
USER="test",
PASSWORD="test"

);

Create sharding rules through DistSQL.
CREATE SHARDING TABLE RULE t_user (
STORAGE_UNITS(ds_0, ds_1, ds_2, ds_3),
SHARDING_COLUMN=id,TYPE(NAME="MOD",PROPERTIES("sharding‑count"=10))
);

2. Install test tools.
tar ‑xzvf sysbench‑1.0.20.tar.gz ‑C /usr/local
cd /usr/local/sysbench‑1.0.20
./autogen.sh
./configure
make &&make install

3. Obtain data.
sysbench oltp_read_write ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sharding_db ‑‑tables=1 ‑‑table‑size=140000000 ‑‑report‑interval=5 ‑‑time=600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off cleanup

sysbench oltp_read_write ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sharding_db ‑‑tables=1 ‑‑table‑size=140000000 ‑‑report‑interval=5 ‑‑time=600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off prepare

4. Carry out stress testing.
■ Read/write Test.

sysbench oltp_read_write ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sharding_db ‑‑tables=1 ‑‑table‑size=140000000 ‑‑report‑interval=5 ‑‑time=180 ‑‑threads=200 ‑‑max‑requests=0 ‑‑mysql‑
ignore‑errors="all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off run

125



Beijing SphereEx Technology Co., Ltd.

Test Results

Application Threads TPS Latency99%(ms)
DBPlusEngine‑Proxy 256 10,710 43.39
MySQL 256 1,827 475.79

126



Beijing SphereEx Technology Co., Ltd.

Result: under sharding scenarios, scaling out computing nodes can improve the throughput linearly.
The result is for reference only. Users can carry out a test based on actual business scenarios.

Monitoring Information

Sysbench——> Proxy——> MySQL(4)

■ Proxy

127



Beijing SphereEx Technology Co., Ltd.

■ MySQL(1)

■ MySQL(2)

■ MySQL(3)

128



Beijing SphereEx Technology Co., Ltd.

■ MySQL(4)

Sysbench——> MySQL

■ MySQL

129



Beijing SphereEx Technology Co., Ltd.

5.3.2 Read/Write Splitting

Read/Write Test Scenario.

Test Objective

According to read/write splitting rules, DBPlusEngine‑Proxy routes the read and write requests into the primary
database and secondary database respectively. We use the sysbench tool to carry out stress testing on read/write
scenarios, to obtain the performance indicator of the read/write splitting feature.

130



Beijing SphereEx Technology Co., Ltd.

Test Tool

Sysbench

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
MySQL 192.168.xx.20 13308 8.0.29
MySQL 192.168.xx.20 13309 8.0.29

Server Configuration

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Test Procedure

1. Create a test database.
#Primary database
mysql ‑utest ‑h192.168.xx.20 ‑P13308 ‑p

CREATE DATABASE IF NOT EXISTS test;

Create a logical database.
mysql ‑uroot ‑h192.168.xx.25 ‑P3307 ‑proot

DROP DATABASE IF EXISTS sphereex_demo;

CREATE DATABASE IF NOT EXISTS sphereex_demo;

Associate the data source through DistSQL.
use sphereex_demo;

REGISTER STORAGE UNIT write_ds (
HOST="192.168.xx.20",
PORT=13308,
DB="test",
USER="test",
PASSWORD="test"

), read_ds (
HOST="192.168.xx.20",
PORT=13309,
DB="test",
USER="test",
PASSWORD="test"

);

Create read/write splitting rules through DistSQL.

131



Beijing SphereEx Technology Co., Ltd.

CREATE READWRITE_SPLITTING RULE readwrite_ds (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds),
TYPE(NAME="FIXED_REPLICA_RANDOM")
);

2. Install test tools.
tar ‑xzvf sysbench‑1.0.20.tar.gz ‑C /usr/local
cd /usr/local/sysbench‑1.0.20
./autogen.sh
./configure
make &&make install

3. Obtain data.
sysbench oltp_point_select ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=sphereex_demo ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=256 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off cleanup

sysbench oltp_point_select ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=sphereex_demo ‑‑tables=1 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=256 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off prepare

4. Carry out stress testing.
■ Read/Write Test

sysbench oltp_read_write ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=1 ‑‑table‑size=1000000 ‑‑report‑interval=5 ‑‑time=120 ‑‑threads=200 ‑‑max‑requests=0 ‑‑mysql‑
ignore‑errors="all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off run

sysbench oltp_read_write ‑‑mysql‑host='192.168.xx.20' ‑‑mysql‑port=13308 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=test ‑‑tables=1 ‑‑table‑size=1000000 ‑‑report‑interval=5 ‑‑time=120 ‑‑threads=200 ‑‑max‑requests=0 ‑‑mysql‑ignore‑errors=
"all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off run

Test Result

# sysbench——> Proxy——> MySQL
SQL statistics:
queries performed:
read: 4185530
write: 1674212
other: 837106
total: 6696848

transactions: 418553 (3485.96 per sec.)
queries: 6696848 (55775.38 per sec.)
ignored errors: 0 (0.00 per sec.)
reconnects: 0 (0.00 per sec.)

General statistics:
total time: 120.0640s
total number of events: 418553

Latency (ms):
min: 7.61
avg: 57.35
max: 1035.85
95th percentile: 164.45
sum: 24005109.36

Threads fairness:

132



Beijing SphereEx Technology Co., Ltd.

events (avg/stddev): 2092.7650/22.11
execution time (avg/stddev): 120.0255/0.01

# sysbench——> MySQL
SQL statistics:
queries performed:
read: 2398650
write: 959460
other: 479730
total: 3837840

transactions: 239865 (1995.35 per sec.)
queries: 3837840 (31925.58 per sec.)
ignored errors: 0 (0.00 per sec.)
reconnects: 0 (0.00 per sec.)

General statistics:
total time: 120.2079s
total number of events: 239865

Latency (ms):
min: 2.93
avg: 100.16
max: 1735.34
95th percentile: 282.25
sum: 24023941.63

Threads fairness:
events (avg/stddev): 1199.3250/13.23
execution time (avg/stddev): 120.1197/0.08

Application TPS QPS Latency95%(ms)
DBPlusEngine‑Proxy 3,485 55,775 164.45
MySQL 1,995 31,925 282.25

133



Beijing SphereEx Technology Co., Ltd.

134



Beijing SphereEx Technology Co., Ltd.

Result: under read/write splitting scenarios, the performance and throughput are improved significantly.
The result is for reference only. Users can carry out a test based on actual business scenarios.

Monitoring Information

sysbench——> MySQL

PRIMARY

135



Beijing SphereEx Technology Co., Ltd.

SECONDARY

sysbench——> Proxy——> MySQL

PRIMARY

136



Beijing SphereEx Technology Co., Ltd.

SECONDARY

5.3.3 Data Encryption
Data Encryption Test Scenario.

137



Beijing SphereEx Technology Co., Ltd.

Test Objective

According to the encryption rules, DBPlusEngine‑Proxy inserts data into databases. We use the sysbench tool to carry
out stress testing under read/write scenarios, to obtain the performance indicator of the encryption feature.

Test Tool

Sysbench

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
MySQL 192.168.xx.20 13306 8.0.29

Server Configuration

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

138



Beijing SphereEx Technology Co., Ltd.

Test Procedure

1. Create a test database.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTS encrypt_db;

CREATE DATABASE IF NOT EXISTS encrypt_db;

Create a logical database.
mysql ‑uroot ‑h192.168.xx.25 ‑P3307 ‑proot

DROP DATABASE IF EXISTS sphereex_demo;

CREATE DATABASE IF NOT EXISTS sphereex_demo;

Associate the data source through DistSQL.
USE sphereex_demo;

REGISTER STORAGE UNIT sphereex_demo(
HOST="192.168.xx.20",
PORT=13306,
DB="encrypt_db",
USER="test",
PASSWORD="test"
);

Create encryption rules through DistSQL.
CREATE ENCRYPT RULE t_user (
COLUMNS(
(NAME=idCard,CIPHER=idcard_cipher,TYPE(NAME="AES",PROPERTIES("aes‑key‑value"="123456abc"))),
(NAME=mobile, CIPHER =mobile_cipher,TYPE(NAME="AES",PROPERTIES("aes‑key‑value"="123456abc")))));

2. Install test tools.
tar ‑xzvf sysbench‑1.0.20.tar.gz ‑C /usr/local
cd /usr/local/sysbench‑1.0.20
./autogen.sh
./configure
make &&make install

3. Obtain data.
sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off cleanup

sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off prepare

4. Carry out stress testing.
Read/Write Test
sysbench oltp_read_write ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=1 ‑‑table‑size=1000000 ‑‑report‑interval=5 ‑‑time=180 ‑‑threads=200 ‑‑max‑requests=0 ‑‑mysql‑
ignore‑errors="all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off run

139



Beijing SphereEx Technology Co., Ltd.

Test Result

Application TPS QPS
DBPlusEngine‑Proxy（AES） 11,916 190,654
DBPlusEngine‑Proxy（MD5） 12,924 206,779
DBPlusEngine‑Proxy（SM4） 10,941 175,058
DBPlusEngine‑Proxy（SM3） 13,033 208,894
DBPlusEngine‑Proxy（RC4） 10,655 170,479
MySQL 24,766 396,254

Result: under data encryption scenarios, the throughput decreased notably, and there are slight differences when
using different encryption algorithms.
The result is for reference only. Users can carry out a test based on actual business scenarios.

140



Beijing SphereEx Technology Co., Ltd.

Monitoring Information

DBPlusEngine‑Proxy（AES）
■ Proxy

■ MySQL

DB Plus Engine‑Proxy（MD5）
■ Proxy

■ MySQL

141



Beijing SphereEx Technology Co., Ltd.

DB Plus Engine‑Proxy（SM4）
■ Proxy

■ MySQL

DB Plus Engine‑Proxy（SM3）
■ Proxy

142



Beijing SphereEx Technology Co., Ltd.

■ MySQL

DB Plus Engine‑Proxy（RC4）
■ Proxy

■ MySQL

143



Beijing SphereEx Technology Co., Ltd.

MySQL

5.3.4 Shadow Database

Shadow Database Test Scenario.

144



Beijing SphereEx Technology Co., Ltd.

Test Objective

Create data for the production database and the shadow database. According to routing rules, make requests for the
productiondatabase and the shadowdatabase respectively bymatching an algorithm for values. Weuse the sysbench
stress testing tool to carry out point queries so as to obtain the performance indicator of the shadow DB feature.

Test Tool

Sysbench

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
MySQL 192.168.xx.20 13306 8.0.29
MySQL 192.168.xx.21 13306 8.0.29

Server Configuration

145



Beijing SphereEx Technology Co., Ltd.

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD 820 G
JDK 17.0.2

Test Procedure

1. Create a test database.
Create a production database and a shadow database.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTS prod_ds;

CREATE DATABASE IF NOT EXISTS prod_ds;

mysql ‑utest ‑h192.168.xx.21 ‑P13306 ‑p

DROP DATABASE IF EXISTS shadow_ds;

CREATE DATABASE IF NOT EXISTS shadow_ds;

Create a logical database.
mysql ‑uroot ‑h192.168.xx.25 ‑P3307 ‑proot

DROP DATABASE IF EXISTS sphereex_demo;

CREATE DATABASE IF NOT EXISTS sphereex_demo;

Associate the data source through DistSQL.
USE sphereex_demo;

REGISTER STORAGE UNIT ds (
HOST="192.168.xx.20",
PORT=13306,
DB="prod_ds",
USER="test",
PASSWORD="test"

),ds_shadow (
HOST="192.168.xx.21",
PORT=13306,
DB="shadow_ds",
USER="test",
PASSWORD="test"

);

Create shadow DB rules through DistSQL.
CREATE SHADOW RULE shadowDataSource(
SOURCE=ds,
SHADOW=ds_shadow,
t_user(
TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"="status", "value"=1)),
TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"=true)))
);

2. Install test tools.

146



Beijing SphereEx Technology Co., Ltd.

tar ‑xzvf sysbench‑1.0.20.tar.gz ‑C /usr/local
cd /usr/local/sysbench‑1.0.20
./autogen.sh
./configure
make &&make install

Transform Sysbench’s oltp_common.lua scripts. The Shadow’s hint algorithm is supported.
local stmt_defs = {
point_selects = {
"SELECT c FROM sbtest%uWHERE id=? /*shadow:true*/",
t.INT},

simple_ranges = {
"SELECT c FROM sbtest%uWHERE id BETWEEN ? AND ?",
t.INT, t.INT},

sum_ranges = {
"SELECT SUM(k) FROM sbtest%uWHERE id BETWEEN ? AND ?",
t.INT, t.INT},

order_ranges = {
"SELECT c FROM sbtest%uWHERE id BETWEEN ? AND ? ORDER BY c",
t.INT, t.INT},

distinct_ranges = {
"SELECT DISTINCT c FROM sbtest%uWHERE id BETWEEN ? AND ? ORDER BY c",
t.INT, t.INT},

index_updates = {
"UPDATE sbtest%u SET k=k+1 WHERE id=? /*shadow:true*/",
t.INT},

non_index_updates = {
"UPDATE sbtest%u SET c=? WHERE id=? /*shadow:true*/",
{t.CHAR, 120}, t.INT},

deletes = {
"DELETE FROM sbtest%uWHERE id=? /*shadow:true*/",
t.INT},

inserts = {
"INSERT INTO sbtest%u (id, k, c, pad) VALUES (?, ?, ?, ?)/*shadow:true*/",
t.INT, t.INT, {t.CHAR, 120}, {t.CHAR, 60}},

}

3. Obtain data.
sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.20' ‑‑mysql‑port=13306 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=prod_ds ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑percentile=99 ‑‑
mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off cleanup

sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.20' ‑‑mysql‑port=13306 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=prod_ds ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑percentile=99 ‑‑
mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off prepare

sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.21' ‑‑mysql‑port=13306 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=shadow_ds ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑percentile=99
‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off cleanup

sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.21' ‑‑mysql‑port=13306 ‑‑mysql‑user=test ‑‑mysql‑password='test' ‑‑mysql‑
db=shadow_ds ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑percentile=99
‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off prepare

4. Carry out stress testing.
■ Read‑only Test.

sysbench oltp_point_select ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=5 ‑‑time=600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off run

147



Beijing SphereEx Technology Co., Ltd.

Test Result

Application TPS QPS
DB Plus Engine‑Proxy (No Rules) 13,844 221,509
DB Plus Engine‑Proxy(shadow) 12,932 206,918
DB Plus Engine‑Proxy(pro) 13,099 209,586

Result: under shadow database scenarios, there’s little difference when routing traffic to a production database or a
shadow database. Throughput only decreases slightly.
The result is for reference only. Users can carry out a test based on actual business scenarios.

148



Beijing SphereEx Technology Co., Ltd.

Monitoring Information

DBPlusEngine‑Proxy(No Rules)

DB Plus Engine‑Proxy(shadow / pro)

5.3.5 Probe

Probe Test Scenario.

149



Beijing SphereEx Technology Co., Ltd.

Test Objective

DBPlusEngine‑Proxy can obtain observability through performance loss after integrating with
Prometheus/Zipkin/General log & Slow log by plugins, or integrating with other components by plugins. We use the
sysbench stress testing tool to perform read/write operations, to obtain the performance of DBPlusEngine‑Proxy after
the plugin has enabled features.

Test Tool

Sysbench

150



Beijing SphereEx Technology Co., Ltd.

Test Environment

Application IP Address Port Version
DBPlusEngine‑Proxy 192.168.xx.25 3307 1.2
DBPlusEngine‑Plugin 192.168.xx.25 1.2

-

MySQL 192.168.xx.20 13306 8.0.29
Prometheus

- --

Zipkin
- - -

General log & Slow log
---

Server Configuration

Item Configuration
CPU 48 C
Memory 96 G
Hard Disk SSD_SATA3 820 G
JDK 17.0.2

Configure agent.yaml and enable related monitoring.
# Copyright © 2022，Beijing Sifei Software Technology Co., LTD.
# All Rights Reserved.
# Unauthorized copying of this file, via any medium is strictly prohibited.
# Proprietary and confidential

plugins:
logging:
BaseLogging:
props:
slow‑query‑log: true
long‑query‑time: 5000
general‑query‑log: true

# metrics:
# Prometheus:
# host: "0.0.0.0"
# port: 9090
# props:
# jvm‑information‑collector‑enabled: "true"
# tracing:
# Jaeger:
# host: "localhost"
# port: 5775
# props:
# service‑name: "shardingsphere"
# jaeger‑sampler‑type: "const"
# jaeger‑sampler‑param: "1"
# Zipkin:
# host: "localhost"
# port: 9411
# props:
# service‑name: "shardingsphere"
# url‑version: "/api/v2/spans"
# sampler‑type: "const"
# sampler‑param: "1"
# SkyWalking:

151



Beijing SphereEx Technology Co., Ltd.

# props:
# opentracing‑tracer‑class‑name: "org.apache.skywalking.apm.toolkit.opentracing.SkywalkingTracer"
# OpenTelemetry:
# props:
# otel‑resource‑attributes: "service.name=shardingsphere"
# otel‑traces‑exporter: "zipkin"

Use start‑with‑agent.sh scripts to start DBPlusEngine‑Proxy.

Test Procedure

1. Create a test database.
mysql ‑utest ‑h192.168.xx.20 ‑P13306 ‑p

DROP DATABASE IF EXISTS agent_ds;

CREATE DATABASE IF NOT EXISTS agent_ds;

Create a logical database.
mysql ‑uroot ‑h192.168.xx.25 ‑P3307 ‑proot

DROP DATABASE IF EXISTS sphereex_demo;

CREATE DATABASE IF NOT EXISTS sphereex_demo;

Associate the data source through DistSQL.
USE sphereex_demo;

REGISTER STORAGE UNIT ds_0 (
HOST="192.168.xx.20",
PORT=13306,
DB="agent_ds",
USER="test",
PASSWORD="test"

);

2. Install test tools.
tar ‑xzvf sysbench‑1.0.20.tar.gz ‑C /usr/local
cd /usr/local/sysbench‑1.0.20
./autogen.sh
./configure
make &&make install

3. Obtain data.
sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off cleanup

sysbench oltp_read_only ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=3600 ‑‑threads=128 ‑‑max‑requests=0 ‑‑
percentile=99 ‑‑mysql‑ignore‑errors="all" ‑‑rand‑type=uniform ‑‑range_selects=off ‑‑auto_inc=off prepare

4. Carry out stress testing.
■ Read‑only Test

152



Beijing SphereEx Technology Co., Ltd.

sysbench oltp_read_write ‑‑mysql‑host='192.168.xx.25' ‑‑mysql‑port=3307 ‑‑mysql‑user=root ‑‑mysql‑password='root' ‑‑mysql‑
db=sphereex_demo ‑‑tables=1 ‑‑table‑size=1000000 ‑‑report‑interval=5 ‑‑time=180 ‑‑threads=200 ‑‑max‑requests=0 ‑‑mysql‑
ignore‑errors="all" ‑‑range_selects=off ‑‑rand‑type=uniform ‑‑auto_inc=off run

Test Result

Application TPS QPS
DBPlusEngine‑Proxy without Plugin 13,788 220,611
DBPlusEngine‑Proxy with Prometheus 12,934 206,943
DBPlusEngine‑Proxy with Prometheus & Zipkin(1) 6,930 110,883
DBPlusEngine‑Proxy with Prometheus & Zipkin(0.5) 7,326 117,217
DBPlusEngine‑Proxy with Prometheus & Zipkin(0.1) 7,632 122,115
Agent enabled general log (no writing logs) 12,707 203,315
Agent enabled general log 4,636 74,169

Result: when using a probe to improve observability, the performance slightly decreases after collecting themonitor‑
ing indicators. After tracing the performance, it can be seen that the performance decreases notably, which is slightly
different facing different sampling rates.
The result is for reference only. Users can carry out a test based on actual business scenarios.

153



Beijing SphereEx Technology Co., Ltd.

Monitoring Information

DBPlusEngine‑Proxy without Plugin

DBPlusEngine‑Proxy with Prometheus

DBPlusEngine‑Proxy with Prometheus & Zipkin(1)

DBPlusEngine‑Proxy with Prometheus & Zipkin(0.5)

154



Beijing SphereEx Technology Co., Ltd.

DBPlusEngine‑Proxy with Prometheus & Zipkin(0.1)

Agent enabled general log (no writing logs)

Agent enabled general log

155



Beijing SphereEx Technology Co., Ltd.

5.4 Appendix

5.4.1 JMH Instructions

Usage: java ‑jar ... [regexp*] [options]
[opt] means optional argument.
<opt> means required argument.
"+" means comma‑separated list of values.
"time" arguments accept time suffixes, like "100ms".

Command line options usually take precedence over annotations.

[arguments] Benchmarks to run (regexp+). (default: .*)

‑bm <mode> Benchmark mode. Available modes are: [Throughput/thrpt,
AverageTime/avgt, SampleTime/sample, SingleShotTime/ss,
All/all]. (default: Throughput)

‑bs <int> Batch size: number of benchmark method calls per
operation. Some benchmark modes may ignore this
setting, please check this separately. (default:
1)

‑e <regexp+> Benchmarks to exclude from the run.

‑f <int> Howmany times to fork a single benchmark. Use 0 to
disable forking altogether. Warning: disabling
forking may have detrimental impact on benchmark
and infrastructure reliability, you might want
to use different warmupmode instead. (default:
5)

‑foe <bool> Should JMH fail immediately if any benchmark had
experienced an unrecoverable error? This helps
to make quick sanity tests for benchmark suites,
as well as make the automated runs with checking error
codes. (default: false)

‑gc <bool> Should JMH force GC between iterations? Forcing
the GCmay help to lower the noise in GC‑heavy benchmarks,
at the expense of jeopardizing GC ergonomics decisions.
Use with care. (default: false)

‑h Display help, and exit.

156



Beijing SphereEx Technology Co., Ltd.

‑i <int> Number of measurement iterations to do. Measurement
iterations are counted towards the benchmark score.
(default: 1 for SingleShotTime, and 5 for all other
modes)

‑jvm <string> Use given JVM for runs. This option only affects forked
runs.

‑jvmArgs <string> Use given JVM arguments. Most options are inherited
from the host VM options, but in some cases you want
to pass the options only to a forked VM. Either single
space‑separated option line, or multiple options
are accepted. This option only affects forked runs.

‑jvmArgsAppend <string> Same as jvmArgs, but append these options after the
already given JVM args.

‑jvmArgsPrepend <string> Same as jvmArgs, but prepend these options before
the already given JVM arg.

‑l List the benchmarks that match a filter, and exit.

‑lp List the benchmarks that match a filter, along with
parameters, and exit.

‑lprof List profilers, and exit.

‑lrf List machine‑readable result formats, and exit.

‑o <filename> Redirect human‑readable output to a given file.

‑opi <int> Override operations per invocation, see @OperationsPerInvocation
Javadoc for details. (default: 1)

‑p <param={v,}*> Benchmark parameters. This option is expected to
be used once per parameter. Parameter name and parameter
values should be separated with equals sign. Parameter
values should be separated with commas.

‑prof <profiler> Use profilers to collect additional benchmark data.
Some profilers are not available on all JVMs and/or
all OSes. Please see the list of available profilers
with ‑lprof.

‑r <time> Minimum time to spend at eachmeasurement iteration.
Benchmarks may generally run longer than iteration
duration. (default: 10 s)

‑rf <type> Format type for machine‑readable results. These
results are written to a separate file (see ‑rff).
See the list of available result formats with ‑lrf.
(default: CSV)

‑rff <filename> Write machine‑readable results to a given file.
The file format is controlled by ‑rf option. Please
see the list of result formats for available formats.
(default: jmh‑result.<result‑format>)

‑si <bool> Should JMH synchronize iterations? This would significantly
lower the noise in multithreaded tests, by making
sure the measured part happens only when all workers
are running. (default: true)

157



Beijing SphereEx Technology Co., Ltd.

‑t <int> Number of worker threads to run with. 'max' means
the maximum number of hardware threads available
on the machine, figured out by JMH itself. (default:
1)

‑tg <int+> Override thread group distribution for asymmetric
benchmarks. This option expects a comma‑separated
list of thread counts within the group. See @Group/@GroupThreads
Javadoc for more information.

‑to <time> Timeout for benchmark iteration. After reaching
this timeout, JMH will try to interrupt the running
tasks. Non‑cooperating benchmarks may ignore this
timeout. (default: 10 min)

‑tu <TU> Override time unit in benchmark results. Available
time units are: [m, s, ms, us, ns]. (default: SECONDS)

‑v <mode> Verbosity mode. Available modes are: [SILENT, NORMAL,
EXTRA]. (default: NORMAL)

‑w <time> Minimum time to spend at each warmup iteration. Benchmarks
may generally run longer than iteration duration.
(default: 10 s)

‑wbs <int> Warmup batch size: number of benchmark method calls
per operation. Some benchmark modes may ignore this
setting. (default: 1)

‑wf <int> Howmany warmup forks to make for a single benchmark.
All iterations within the warmup fork are not counted
towards the benchmark score. Use 0 to disable warmup
forks. (default: 0)

‑wi <int> Number of warmup iterations to do. Warmup iterations
are not counted towards the benchmark score. (default:
0 for SingleShotTime, and 5 for all other modes)

‑wm <mode> Warmupmode for warming up selected benchmarks.
Warmupmodes are: INDI = Warmup each benchmark individually,
thenmeasure it. BULK = Warmup all benchmarks first,
then do all the measurements. BULK_INDI = Warmup
all benchmarks first, then re‑warmup each benchmark
individually, then measure it. (default: INDI)

‑wmb <regexp+> Warmup benchmarks to include in the run in addition
to already selected by the primary filters. Harness
will not measure these benchmarks, but only use them
for the warmup.

158



Beijing SphereEx Technology Co., Ltd.

6
Quick Start

This chapter provides users with the simplest and quickest way to get started with DBPlusEngine.

6.1 DBPlusEngine‑Driver

6.1.1 Scenarios

DBPlusEngine‑Driver can be configured by four methods, Java, YAML, Spring namespace and Spring boot starter. De‑
velopers can choose the most suitable method according to different situations.

6.1.2 Restrictions

Currently only Java language is supported.

6.1.3 Prerequisites

The development environment requires Java JRE 8 or later.

6.1.4 Procedure

1. Rules configuration.
Please refer to User Manual for more details.

2. Import Maven dependency.
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core‑spring‑boot‑starter</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.
3. Edit application.yml.

159



Beijing SphereEx Technology Co., Ltd.

spring:
shardingsphere:
datasource:
names: ds_0, ds_1
ds_0:
type: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&useSSL=false&useUnicode=true&

characterEncoding=UTF‑8
username: root
password:
ds_1:
type: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&useUnicode=true&

characterEncoding=UTF‑8
username: root
password:

rules:
sharding:
tables:
...

6.2 DBPlusEngine‑Proxy

6.2.1 Application Scenarios

DBPlusEngine‑Proxy is positionedas a transparent databaseproxy. Any client that usesMySQL, PostgreSQL, andopen‑
Gauss protocols are supported to operate data, which is more friendly to heterogeneous languages and operation &
maintenance scenarios.

6.2.2 Limitations

DBPlusEngine‑Proxy has limited support for system databases or tables (such as information_schema and
pg_catalog).
When connecting to Proxy through graphical database clients, an error may be displayed in the clients or Proxy. You
can use command‑line clients (such as mysql, psql, and gsql) to connect to the Proxy authentication function.

6.2.3 Prerequisite

Additional dependencies are not required when using Docker to start DBPlusEngine‑Proxy. When it comes to using
binary distribution, Java JRE 8 or later versions are required for the environment.

160



Beijing SphereEx Technology Co., Ltd.

6.2.4 Procedure

1. Get DBPlusEngine‑Proxy
Currently, DBPlusEngine‑Proxy can be obtained through the following methods:

■ Using Binary Distribution
■ Using Docker
■ Using Operator
2. Rules Configuration

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml.
Edit %SHARDINGSPHERE_PROXY_HOME%/conf/config‑xxx.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the path after the Proxy is decompressed. For example, /opt/
shardingsphere‑proxy‑bin/

Please refer to the Configuration Manual for more details.
3. Import Dependencies

If the backend database is PostgreSQL or Oracle, there’s no need for additional dependencies.
If the backend database is MySQL, please download: mysql‑connector‑java‑5.1.47.jar or mysql‑connector‑java‑
8.0.11.jar, and put it into the %SHARDINGSPHERE_PROXY_HOME%/ext‑lib directory.

4. Start the server
■ Use default configuration items.

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

The default port is 3307, and the default configuration file directory is %SHARDINGSPHERE_PROXY_HOME%/conf/.
■ Customize port and configure file directory.

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${proxy_port} ${proxy_conf_directory}

■ Mandatory Startup.
sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ‑f

‑f parameter is used to forcibly enable Proxy and itwill ignore abnormal data sources during startup. Users can remove
abnormal data sources through DistSQL after the Proxy is started.

5. Use DBPlusEngine‑Proxy
Execute MySQL, PostgreSQL, or openGauss client command to run DBPlusEngine‑Proxy.
mysql ‑h${proxy_host} ‑P${proxy_port} ‑u${proxy_username} ‑p${proxy_password}

Use PostgreSQL client to connect to DBPlusEngine‑Proxy:
psql ‑h ${proxy_host} ‑p ${proxy_port} ‑U ${proxy_username}

Use openGauss client to connect to DBPlusEngine‑Proxy:
gsql ‑r ‑h ${proxy_host} ‑p ${proxy_port} ‑U ${proxy_username} ‑W ${proxy_password}

161

https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar


Beijing SphereEx Technology Co., Ltd.

7
User Manual

This chapter describes how to use components of DBPlusEngine.

7.1 DBPlusEngine‑Driver

Configuration is the only module in DBPlusEngine‑JDBC that interacts with application developers, through which
developers can quickly and clearly understand the functions provided by DBPlusEngine‑JDBC.
This chapter is a configuration manual for DBPlusEngine‑JDBC, which can also be referred to as a dictionary if neces‑
sary.
DBPlusEngine‑JDBC has provided 4 kinds of configurationmethods for different situations. By configuration, applica‑
tion developers can flexibly use data sharding, readwrite‑splitting, data encryption, shadow database or the combi‑
nation of them.
Mixed rule configurations are very similar to single rule configuration, except for the differences from single rule to
multiple rules.
It should be noted that the superposition between rules are data source and table name related. If the previous rule
is data source oriented aggregation, the next rule needs to use the aggregated logical data source name configured
by the previous rule when configuring the data source; Similarly, if the previous rule is table oriented aggregation, the
next rule needs to use the aggregated logical table name configured by the previous rule when configuring the table.

7.1.1 Use of License in DBPlusEngine‑Driver

Background

Function of Li‑
cense

Description

limit duration Limit the duration of DBPlusEngine.
limit resources Limit the number of storage nodes created by the DBPlusEngine.
limit instances Limit thenumberof instances createdby [DBPlusEngine‑Proxy]+[DBPlusEngine‑Driver] in a sin‑

gle cluster.
limit versions Limit the version of the DBPlusEngine instance in a stand‑alone or cluster.

162



Beijing SphereEx Technology Co., Ltd.

Configuration Method

JAVA API

Import Maven Dependency

<dependency>
<groupId>com.sphere‑ex</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${dbplusengine.version}</version>

</dependency>

Configuration Example

Class name: com.sphereex.dbplusengine.license.config.LicenseRuleConfiguration
Attributes:

Name DataType Description
license String license registration code

YAML

Import Maven Dependency

<dependency>
<groupId>com.sphere‑ex</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${dbplusengine.version}</version>

</dependency>

Configuration Example

databaseName:

mode:

dataSources:

rules:

license: xxx

163



Beijing SphereEx Technology Co., Ltd.

SpringBoot

Import Maven Dependency

<dependency>
<groupId>com.sphere‑ex</groupId>
<artifactId>shardingsphere‑jdbc‑core‑spring‑boot‑starter</artifactId>
<version>${dbplusengine.version}</version>

</dependency>

Configuration Example

spring.dbplusengine.rules.license: xxx

Spring Name Space

Import Maven Dependency

<dependency>
<groupId>com.sphere‑ex</groupId>
<artifactId>shardingsphere‑jdbc‑core‑spring‑namespace</artifactId>
<version>${dbplusengine.version}</version>

</dependency>

Configuration Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema‑instance"
xmlns:license="https://www.sphere‑ex.com/schema/dbplusengine/license"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring‑beans.xsd
https://www.sphere‑ex.com/schema/dbplusengine/license
https://www.sphere‑ex.com/schema/dbplusengine/license/license.xsd
">

<license:license id="license" license="xxx"/>
</beans>

Post‑processing

If the following error occurs, please obtain the latest license and update the license.
■ No license prompt

FATAL: License not registered

■ Incomplete license prompt
FATAL: Incomplete license

■ License expiration prompt
FATAL: License is expired

■ Illegal license prompt

164



Beijing SphereEx Technology Co., Ltd.

ERROR: The xxx exceeds the limit of the license

7.1.2 Java API

Overview

Java API is the basic configurationmethods in DBPlusEngine‑Driver, and other configurations will eventually be trans‑
formed into Java API configuration methods.
The Java API is the most complex and flexible configuration method, which is suitable for the scenarios requiring dy‑
namic configuration through programming.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Create Data Source

DBPlusEngine‑Driver Java API consists of schema name, mode configuration, data source map, rule configurations
and properties.
The ShardingSphereDataSource created by ShardingSphereDataSourceFactory implements the standard JDBC Data‑
Source interface.
String schemaName = "foo_schema"; // Indicate logic schema name
ModeConfiguration modeConfig = ... // Build mode configuration
Map<String, DataSource> dataSourceMap = ... // Build actual data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build concentrate rule configurations
Properties props = ... // Build properties
DataSource dataSource = ShardingSphereDataSourceFactory.createDataSource(schemaName, modeConfig, dataSourceMap,
ruleConfigs, props);

Please refer to Mode Confiugration for more mode details.
Please refer to Data Source Confiugration for more data source details.
Please refer to Rules Confiugration for more rule details.

Use Data Source

Developer can choose to use native JDBC or ORM frameworks such as JPA, Hibernate or MyBatis through the Data‑
Source.
Take native JDBC usage as an example:
// Create ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.createDataSource(schemaName, modeConfig, dataSourceMap,
ruleConfigs, props);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.user_id=? AND o.order_id=?";

165



Beijing SphereEx Technology Co., Ltd.

try (
Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {
while(rs.next()) {
// ...

}
}

}

Mode Configuration

Root Configuration

Class name: org.apache.shardingsphere.infra.config.mode.ModeConfiguration
Attributes:

N a m
e

Dat aType Description D e f a
u l t V a
l u e

t y p e S tring Type of mode configurationValues could be: Cluster M e m
o r y

r e p o
s i t o
r y

Persi stRep
osito ryCon
figur ation

Persist repository configurationMemory type does not need persist, could
be nullStandalone type uses StandalonePersistRepositoryConfigurationCluster
type uses ClusterPersistRepositoryConfiguration

o v e r
w r i t
e

bo olean Whether overwrite persistent configuration with local configuration f a l s e

Cluster Persist Configuration

Class name: org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration
Attributes:

Name DataType Description
type String Type of persist repository
namespace String Namespace of registry center
serverLists String Server lists of registry center
props Properties Properties of persist repository

Please refer to Builtin Persist Repository List for more details about type of repository.

166



Beijing SphereEx Technology Co., Ltd.

Data Source

DBPlusEngine‑Driver Supports all JDBC drivers and database connection pools.

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced with other
database drivers and connection pools.
Map<String, DataSource> dataSourceMap = new HashMap<>();

// Configure the 1st data source
HikariDataSource dataSource1 = new HikariDataSource();
dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
dataSource1.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSource1.setUsername("root");
dataSource1.setPassword("");
dataSourceMap.put("ds_1", dataSource1);

// Configure the 2nd data source
HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");
dataSourceMap.put("ds_2", dataSource2);

// Configure other data sources
...

Rules

Rules are pluggable part of DBPlusEngine. This chapter is a java rule configuration manual for DBPlusEngine‑Driver.

Sharding

Root Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration
Attributes:

167



Beijing SphereEx Technology Co., Ltd.

Name DataType Description Def ault V alue
tables (+) Collection<ShardingTa

-bleRuleConfiguration>
Sharding table rules

autoTables (+) Coll ec‑
tion<ShardingAutoTa -

bleRuleConfiguration>

Sharding automatic table
rules

bind ingTableGroups (*) Collection<String> Binding table rules E mpty
b roadcastTables (*) Collection<String> Broadcast table rules E mpty
def aultDatabaseSh ard‑
ingStrategy (?)

Sharding StrategyConfigu‑
ration

Default database sharding
strategy

Not shar ding

defaultTableSh ard‑
ingStrategy (?)

Sharding StrategyConfigu‑
ration

Default table sharding
strategy

Not shar ding

defaultKeyGe nerateStrat‑
egy (?)

KeyG eneratorConfigura‑
tion

Default key generator S nowf lake

default ShardingColumn
(?)

String Default sharding column
name

None

shar dingAlgorithms (+) Map<String, Sharding‑
SphereAl gorithmConfigu‑
ration>

Sharding algorithm name
and configurations

None

keyGenerators (?) Map<String, Sharding‑
SphereAl gorithmConfigu‑
ration>

Key generate algorithm
name and configurations

None

Sharding Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration
Attributes:

Name Da taType Description Default Value
logic Table String Name of sharding logic ta‑

-ble
actua lData Nodes (?) String Describe data source

names and actual tables,
delimiter as point. Mul‑
tiple data nodes split by
comma, support inline
expression

Broadcast table or
databases sharding only

data baseS hardi ngStr at‑
egy (?)

Shard ingStr ategyC onfigu
ration

Databases sharding strat‑
egy

Use default databases
sharding strategy

t ableS hardi ngStr ategy
(?)

Shard ingStr ategyC onfigu
ration

Tables sharding strategy Use default tables shard‑
ing strategy

keyG enera teStr ategy (?) K eyGene ratorC onfigu ra‑
tion

Key generator configura‑
tion

Use default key generator

168



Beijing SphereEx Technology Co., Ltd.

Sharding Automatic Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration
Attributes:

Name DataType Description Default Value
lo gicTable String Name of sharding logic ta‑

-ble
a ctualDat aSources (?) String Data source names. Mul‑

tiple data nodes split by
comma

Use all configured data
sources

sharding Strategy (?) Shardin gStrategyCo nfig‑
uration

Sharding strategy Use default sharding strat‑
egy

key Generate Strategy (?) Key GeneratorCo nfigura‑
tion

Key generator configura‑
tion

Use default key generator

Sharding Strategy Configuration

Standard Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration
Attributes:

Name DataType Description
shardingColumn String Sharding column name
shardingAlgorithmName String Sharding algorithm name

Complex Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration
Attributes:

Name DataType Description
shardingColumns String Sharding column name, separated by commas
shardingAlgorithmName String Sharding algorithm name

Hint Sharding Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration
Attributes:

Name DataType Description
shardingAlgorithmName String Sharding algorithm name

169



Beijing SphereEx Technology Co., Ltd.

None Sharding Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration
Attributes: None
Please refer to Built‑in Sharding Algorithm List for more details about type of algorithm.

Key Generate Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration
Attributes:

Name DataType Description
column String Column name of key generate
keyGeneratorName String key generate algorithm name

Please refer to Built‑in Key Generate Algorithm List for more details about type of algorithm.

Readwrite‑splitting

Root Configuration

Class name: org.apache.shardingsphere.readwritesplitting.api.ReadwriteSplittingRuleConfiguration
Attributes:

Name DataType Description
d ataSo
urces (+)

Collectio n<ReadwriteSplittingData
SourceRuleConfiguration>

Data sources of write and reads

loa dBala
ncers (*)

Map<String, ShardingSpher eAlgorithmCon‑
figuration>

Load balance algorithmname and configurations of
replica data sources

Readwrite‑splitting Data Source Configuration

Class name: org.apache.shardingsphere.readwritesplitting.api.rule.ReadwriteSplittingDataSourceRuleConfiguration
Configurable Properties:

Name
Dat aTy pe

Description Default Value

name Str ing Readwrite‑splitting data
-source name

stat icStrategy Str ing Static Readwrite‑splitting
-configuration

dynam icStrategy P rop ert ies Dynamic Readwrite‑
-splitting configuration

loadBa lancerName (?) Str ing Load balance algorithm
name of replica sources

Round robin load balance
algorithm

Classname：org.apache.shardingsphere.readwritesplitting.api.strategy.StaticReadwriteSplittingStrategyConfiguration
Configurable Properties:

170



Beijing SphereEx Technology Co., Ltd.

Name DataType Description
writeDataSourceName String Write data source name
readDataSourceNames List<String> Read data sources list

Classname：org.apache.shardingsphere.readwritesplitting.api.strategy.DynamicReadwriteSplittingStrategyConfiguration
Configurable Properties:

Name
D a t a T y p e

Description De fault V alue

aut oAwareData Source‑
-Name

S t r i n g Database discovery logic
data source name

writeDa taSourceQu
eryEnabled (?)

S t r i n g All read data source are
offline, write data source
whether the data source is
responsible for read traffic

true

Please refer to Built‑in LoadBalance AlgorithmList formore details about type of algorithm. Please refer to UseNorms
for more details about query consistent routing.

HA

Root Configuration

Class name：org.apache.shardingsphere.dbdiscovery.api.config.DatabaseDiscoveryRuleConfiguration
Attributes：

Name DataType Description
dataSources (+) Collection<DatabaseDisc overyDataSourceRuleCon‑

figuration>
Data source configuration

discover yHeartbeats
(+)

Map<String, Databas eDiscoveryHeartBeatConfigura‑
tion>

Detect heartbeat configuration

dis coveryTypes (+) Map<String, ShardingSphereAlgorithmConfiguration> Database discovery type configu‑
ration

Data Source Configuration

Classname：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryDataSourceRuleConfiguration
Attributes：

Name Da taType Description D efa ult Va lue
groupName (+) String Database discovery group

-name
dataSo urceNames (+) Collec tion<S tring> Data source names, mul‑

tiple data source names -

separated with comma.
Such as: ds_0, ds_1

disc overyHear tbeatName
-(+)

String Detect heartbeat name

discover yTypeName (+) String Database discovery type
-name

171



Beijing SphereEx Technology Co., Ltd.

Detect Heartbeat Configuration

Class name：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryHeartBeatConfiguration
Attributes：

Name Da taType Description D ef au lt V al ue
props (+) Prop erties Detect heartbeat attribute

configuration, keep‑alive‑ -

cron configuration, cron
expression. Such as: ‘0/5
* * * * ?’

Database Discovery Type Configuration

Class name：org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration
Attributes：

Name DataType Description D efa ult Va lue
type (+) String Database discovery type,

-such as: MGR、openGauss
props (?) Pr operties Required parameters for

high‑availability types, -

such as MGR’s group‑
name

Encryption

Configuration Entry

Class name: org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration
Attributes:

Name DataType Descr iption D
efault
Value

tables (+) Collect ion<EncryptTableR
uleConfiguration>

E ncrypt table rule co nfigur ations

encryptors (+) Map<String, Sha rdingSphere‑
Algori thmConfiguration>

E ncrypt alg orithm name and co nfigur ations

queryWithCi‑
pherColumn
(?)

boolean W hether query with cipher column for data en crypt.
User you can use pla intext to query if have

true

172



Beijing SphereEx Technology Co., Ltd.

Encrypt Table Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration
Attributes:

Name DataType Description
name String Table name
columns (+) Collection <EncryptColumnRule‑

Configuration>
Encrypt column rule configurations

queryWith Cipher‑
Column (?)

boolean The current table whether query with cipher column
for data encrypt.

Encrypt Column Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration
Attributes:

Name DataTypeDescription
logicColumn String Required field. Logic column name.
dataType String Logical column type, optional (required if other encrypted column, auxiliary query col‑

umn or plain text column types are configured)
cipherColumn String Required field. Cipher column name.
cipher‑
DataType

String Encrypted column type, optional (required if logical column type is configured)

assisted‑
QueryColumn

String Auxiliary query column name, optional

assistedQuery‑
DataType

String Auxiliary query column type, optional (required if auxiliary query column and logical
column types are configured)

plainColumn String Name in plain text, optional
plainDataType String Plain text column type, optional (required if plain text column and logical column types

are configured)
encryptor‑
Name

String Encryption algorithm name, required

Encrypt Algorithm Configuration

Class name: org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration
Attributes:

Name DataType Description
name String Encrypt algorithm name
type String Encrypt algorithm type
properties Properties Encrypt algorithm properties

Please refer to Built‑in Encrypt Algorithm List for more details about type of algorithm.

173



Beijing SphereEx Technology Co., Ltd.

Shadow DB

Root Configuration

Class name: org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration
Attributes:

Name DataType Description Def ault V
alue

d ataSources Map<String, ShadowD ataSource‑
Configuration>

Shadow data source mapping name
and configuration

tables Map<String, ShadowTableConfigura‑
tion>

Shadow table name and configura‑
tion

defaul tShadowAlg
orithmName

String Default shadow algorithm name

shadow Algorithms Map<String, ShardingSphere Algo‑
rithmConfiguration>

Shadow algorithm name and config‑
uration

Shadow Data Source Configuration

Class name: org.apache.shardingsphere.shadow.api.config.datasource.ShadowDataSourceConfiguration
Attributes:

Name DataType Description
sourceDataSourceName String Production data source name
shadowDataSourceName String Shadow data source name

Shadow Table Configuration

Class name: org.apache.shardingsphere.shadow.api.config.table.ShadowTableConfiguration
Attributes:

Name DataType Description
da taSourceNames Colle ction<String> Shadow table location shadow data source mapping names
shadowA lgorithmNames Colle ction<String> Shadow table location shadow algorithm names

Shadow Algorithm Configuration

Please refer to Built‑in Shadow Algorithm List.

174



Beijing SphereEx Technology Co., Ltd.

SQL Parser

Root Configuration

Class：org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration
Attributes：

name DataType Description
sqlCommentParseEnabled (?) boolean Whether to parse SQL comments
parseTreeCache (?) CacheOption Parse syntax tree local cache configuration
sqlStatementCache (?) CacheOption sql statement local cache configuration

Cache option Configuration

Class：org.apache.shardingsphere.sql.parser.api.CacheOption
Attributes：

name D a t
a T y
p e

Description Default Value

i ni ti al
Ca pa ci
ty

i n t Initial capacity of local cache parser syntax tree local cache default value 128,
SQL statement cache default value 2000

ma xi mu
mS iz e(
?)

l o n g Maximum capacity of local cache The default value of local cache for parsing syntax
tree is 1024, and the default value of sql statement
cache is 65535

co nc ur
re nc yL
ev el

i n t Local cache concurrency level, the max‑
imum number of concurrent updates al‑
lowed by threads

4

Mixed Rules

Configuration Item Explanation

/* Data source configuration */
HikariDataSource writeDataSource0 = new HikariDataSource();
writeDataSource0.setDriverClassName("com.mysql.jdbc.Driver");
writeDataSource0.setJdbcUrl("jdbc:mysql://localhost:3306/db0?serverTimezone=UTC&useSSL=false&useUnicode=true&
characterEncoding=UTF‑8");
writeDataSource0.setUsername("root");
writeDataSource0.setPassword("");

HikariDataSource writeDataSource1 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read0OfwriteDataSource0 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read1OfwriteDataSource0 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read0OfwriteDataSource1 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read1OfwriteDataSource1 = new HikariDataSource();

175



Beijing SphereEx Technology Co., Ltd.

// ...Omit specific configuration.

Map<String, DataSource> datasourceMaps = new HashMap<>(6);

datasourceMaps.put("write_ds0", writeDataSource0);
datasourceMaps.put("write_ds0_read0", read0OfwriteDataSource0);
datasourceMaps.put("write_ds0_read1", read1OfwriteDataSource0);

datasourceMaps.put("write_ds1", writeDataSource1);
datasourceMaps.put("write_ds1_read0", read0OfwriteDataSource1);
datasourceMaps.put("write_ds1_read1", read1OfwriteDataSource1);

/* Sharding rule configuration */
// The enumeration value of `ds_$‑>{0..1}` is the name of the logical data source configured with read‑query
ShardingTableRuleConfiguration tOrderRuleConfiguration = new ShardingTableRuleConfiguration("t_order", "ds_${0..1}.t_
order_${[0, 1]}");
tOrderRuleConfiguration.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy(new StandardShardingStrategyConfiguration("order_id",
"tOrderInlineShardingAlgorithm"));
Properties tOrderShardingInlineProps = new Properties();
tOrderShardingInlineProps.setProperty("algorithm‑expression", "t_order_${order_id % 2}");
tOrderRuleConfiguration.getShardingAlgorithms().putIfAbsent("tOrderInlineShardingAlgorithm", new
ShardingSphereAlgorithmConfiguration("INLINE",tOrderShardingInlineProps));

ShardingTableRuleConfiguration tOrderItemRuleConfiguration = new ShardingTableRuleConfiguration("t_order_item", "ds_${0..
1}.t_order_item_${[0, 1]}");
tOrderItemRuleConfiguration.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_item_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy(new StandardShardingStrategyConfiguration("order_item_id",
"tOrderItemInlineShardingAlgorithm"));
Properties tOrderItemShardingInlineProps = new Properties();
tOrderItemShardingInlineProps.setProperty("algorithm‑expression", "t_order_item_${order_item_id % 2}");
tOrderRuleConfiguration.getShardingAlgorithms().putIfAbsent("tOrderItemInlineShardingAlgorithm", new
ShardingSphereAlgorithmConfiguration("INLINE",tOrderItemShardingInlineProps));

ShardingRuleConfiguration shardingRuleConfiguration = new ShardingRuleConfiguration();
shardingRuleConfiguration.getTables().add(tOrderRuleConfiguration);
shardingRuleConfiguration.getTables().add(tOrderItemRuleConfiguration);
shardingRuleConfiguration.getBindingTableGroups().add("t_order, t_order_item");
shardingRuleConfiguration.getBroadcastTables().add("t_bank");
// Default database strategy configuration
shardingRuleConfiguration.setDefaultDatabaseShardingStrategy(new StandardShardingStrategyConfiguration("user_id",
"default_db_strategy_inline"));
Properties defaultDatabaseStrategyInlineProps = new Properties();
defaultDatabaseStrategyInlineProps.setProperty("algorithm‑expression", "ds_${user_id % 2}");
shardingRuleConfiguration.getShardingAlgorithms().put("default_db_strategy_inline", new
ShardingSphereAlgorithmConfiguration("INLINE", defaultDatabaseStrategyInlineProps));

// Key generate algorithm configuration
Properties snowflakeProperties = new Properties();
shardingRuleConfiguration.getKeyGenerators().put("snowflake", new ShardingSphereAlgorithmConfiguration("SNOWFLAKE",
snowflakeProperties));

/* Data encrypt rule configuration */
Properties encryptProperties = new Properties();
encryptProperties.setProperty("aes‑key‑value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new EncryptColumnRuleConfiguration("username", "username", "",
"username_plain", "name_encryptor");
EncryptColumnRuleConfiguration columnConfigTest = new EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_
pwd", "", "pwd_encryptor");
EncryptTableRuleConfiguration encryptTableRuleConfig = new EncryptTableRuleConfiguration("t_user", Arrays.
asList(columnConfigAes, columnConfigTest));
// Data encrypt algorithm configuration
Map<String, ShardingSphereAlgorithmConfiguration> encryptAlgorithmConfigs = new LinkedHashMap<>(2, 1);
encryptAlgorithmConfigs.put("name_encryptor", new ShardingSphereAlgorithmConfiguration("AES", encryptProperties));

176



Beijing SphereEx Technology Co., Ltd.

encryptAlgorithmConfigs.put("pwd_encryptor", new ShardingSphereAlgorithmConfiguration("assistedTest",
encryptProperties));
EncryptRuleConfiguration encryptRuleConfiguration = new EncryptRuleConfiguration(Collections.
singleton(encryptTableRuleConfig), encryptAlgorithmConfigs);

/* Readwrite‑splitting rule configuration */
Properties readwriteProps1 = new Properties();
readwriteProps1.setProperty("write‑data‑source‑name", "write_ds0");
readwriteProps1.setProperty("read‑data‑source‑names", "write_ds0_read0, write_ds0_read1");
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_0", "Static", readwriteProps1, "roundRobin");
Properties readwriteProps2 = new Properties();
readwriteProps2.setProperty("write‑data‑source‑name", "write_ds0");
readwriteProps2.setProperty("read‑data‑source‑names", "write_ds1_read0, write_ds1_read1");
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_1", "Static", readwriteProps2, "roundRobin");

// Load balance algorithm configuration
Map<String, ShardingSphereAlgorithmConfiguration> loadBalanceMaps = new HashMap<>(1);
loadBalanceMaps.put("roundRobin", new ShardingSphereAlgorithmConfiguration("ROUND_ROBIN", new Properties()));

ReadwriteSplittingRuleConfiguration readWriteSplittingRuleConfiguration = new ReadwriteSplittingRuleConfiguration(Arrays.
asList(dataSourceConfiguration1, dataSourceConfiguration2), loadBalanceMaps);

/* Other Properties configuration */
Properties otherProperties = new Properties();
otherProperties.setProperty("sql‑show", "true");

/* The variable `shardingDataSource` is the logic data source referenced by other frameworks(such as ORM, JPA, etc.) */
DataSource shardingDataSource = ShardingSphereDataSourceFactory.createDataSource(datasourceMaps, Arrays.
asList(shardingRuleConfiguration, readWriteSplittingRuleConfiguration, encryptRuleConfiguration), otherProperties);

7.1.3 YAML Configuration

Overview

YAML configuration provides interaction with DBPlusEngine Driver through configuration files. When used together
with the governance module, the configuration of persistence in the configuration center is YAML format.
Note: the YAML configuration file supports more than 3MB of configuration content.
YAML configuration is the most common configuration mode, which can omit the complexity of programming and
simplify user configuration.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

177



Beijing SphereEx Technology Co., Ltd.

YAML Format

The DBPlusEngine‑Driver YAML file consists of schema name, mode configuration, data source map, rule configura‑
tions and properties.
Note: the example connection pool is HikariCP, which can be replaced with other connection pools according to busi‑
ness scenarios.
# Alias of the datasource in JDBC.
# Through this parameter to connect, ShardingSphere‑JDBC and ShardingSphere‑Proxy.
# Default value: logic_db
schemaName (?):

mode:

dataSources:

rules:
‑ !FOO_XXX
...

‑ !BAR_XXX
...

props:
key_1: value_1
key_2: value_2

Please refer to Mode Confiugration for more mode details.
Please refer to Data Source Confiugration for more data source details.
Please refer to Rules Confiugration for more rule details.

Create Data Source

The ShardingSphereDataSource created by YamlShardingSphereDataSourceFactory implements the standard JDBC
DataSource interface.
File yamlFile = // Indicate YAML file
DataSource dataSource = YamlShardingSphereDataSourceFactory.createDataSource(yamlFile);

Use Data Source

Same with Java API.

YAML Syntax Explanation

!! means instantiation of that class
! means self‑defined alias
‑ means one or multiple can be included
[] means array, can substitutable with ‑ each other

178



Beijing SphereEx Technology Co., Ltd.

Mode Configuration

Configuration Item Explanation

mode (?): # Default value is Memory
type: # Type of mode configuration. Values could be: Cluster
repository (?): # Persist repository configuration. Memory type does not need persist
overwrite: # Whether overwrite persistent configuration with local configuration

Cluster Mode

mode:
type: Cluster
repository:
type: # Type of persist repository
props: # Properties of persist repository
namespace: # Namespace of registry center
server‑lists: # Server lists of registry center
foo_key: foo_value
bar_key: bar_value

overwrite: # Whether overwrite persistent configuration with local configuration

Please refer to Builtin Persist Repository List for more details about type of repository.

Data Source

It is divided into single data source configuration andmulti data source configuration. DBPlusEngine‑Driver Supports
all JDBC drivers and database connection pools.
In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced with other
database drivers and connection pools.

Configuration Item Explanation

dataSources: # Data sources configuration, multiple <data‑source‑name> available
<data‑source‑name>: # Data source name
dataSourceClassName: # Data source class name
driverClassName: # Class name of database driver, ref property of connection pool
jdbcUrl: # Database URL, ref property of connection pool
username: # Database username, ref property of connection pool
password: # Database password, ref property of connection pool
# ... Other properties for data source pool

Example

dataSources:
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:
ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver

179



Beijing SphereEx Technology Co., Ltd.

jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root
password:

# Configure other data sources

Rules

Rules are pluggable part of DBPlusEngine. This chapter is a YAML rule configuration manual for DBPlusEngine‑Driver.

Sharding

Configuration Item Explanation

rules:
‑ !SHARDING
tables: # Sharding table configuration
<logic‑table‑name> (+): # Logic table name
actualDataNodes (?): # Describe data source names and actual tables (refer to Inline syntax rules)
databaseStrategy (?): # Databases sharding strategy, use default databases sharding strategy if absent. sharding strategy below

can choose only one.
standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name
complex: # For multiple sharding columns scenario
shardingColumns: # Sharding column names, multiple columns separated with comma
shardingAlgorithmName: # Sharding algorithm name
hint: # Sharding by hint
shardingAlgorithmName: # Sharding algorithm name
none: # Do not sharding
tableStrategy: # Tables sharding strategy, same as database sharding strategy
keyGenerateStrategy: # Key generator strategy
column: # Column name of key generator
keyGeneratorName: # Key generator name

autoTables: # Auto Sharding table configuration
t_order_auto: # Logic table name
actualDataSources (?): # Data source names
shardingStrategy: # Sharding strategy
standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Auto sharding algorithm name

bindingTables (+): # Binding tables
‑ <logic_table_name_1, logic_table_name_2, ...>
‑ <logic_table_name_1, logic_table_name_2, ...>
broadcastTables (+): # Broadcast tables
‑ <table‑name>
‑ <table‑name>
defaultDatabaseStrategy: # Default strategy for database sharding
defaultTableStrategy: # Default strategy for table sharding
defaultKeyGenerateStrategy: # Default Key generator strategy
defaultShardingColumn: # Default sharding column name

# Sharding algorithm configuration
shardingAlgorithms:
<sharding‑algorithm‑name> (+): # Sharding algorithm name
type: # Sharding algorithm type
props: # Sharding algorithm properties
# ...

180



Beijing SphereEx Technology Co., Ltd.

# Key generate algorithm configuration
keyGenerators:
<key‑generate‑algorithm‑name> (+): # Key generate algorithm name
type: # Key generate algorithm type
props: # Key generate algorithm properties
# ...

Readwrite‑splitting

Configuration Item Explanation

Static Readwrite‑splitting

rules:
‑ !READWRITE_SPLITTING
dataSources:
<data‑source‑name> (+): # Logic data source name of readwrite‑splitting
static‑strategy: # Readwrite‑splitting type
write‑data‑source‑name: # Write data source name
read‑data‑source‑names: # Read data source names, multiple data source names separated with comma
loadBalancerName: # Load balance algorithm name

# Load balance algorithm configuration
loadBalancers:
<load‑balancer‑name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
# ...

Dynamic Readwrite‑splitting

rules:
‑ !READWRITE_SPLITTING
dataSources:
<data‑source‑name> (+): # Logic data source name of readwrite‑splitting
dynamic‑strategy: # Readwrite‑splitting type
auto‑aware‑data‑source‑name: # Database discovery logic data source name
write‑data‑source‑query‑enabled: # All read data source are offline, write data source whether the data source is

responsible for read traffic
loadBalancerName: # Load balance algorithm name

# Load balance algorithm configuration
loadBalancers:
<load‑balancer‑name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
# ...

Please refer to Built‑in LoadBalance AlgorithmList formore details about type of algorithm. Please refer to UseNorms
for more details about query consistent routing.

181



Beijing SphereEx Technology Co., Ltd.

HA

rules:
‑ !DB_DISCOVERY
dataSources:
<data‑source‑name> (+): # Logic data source name
dataSourceNames: # Data source names
‑ <data‑source>
‑ <data‑source>
discoveryHeartbeatName: # Detect heartbeat name
discoveryTypeName: # Database discovery type name

# Heartbeat Configuration
discoveryHeartbeats:
<discovery‑heartbeat‑name> (+): # heartbeat name
props:
keep‑alive‑cron: # This is cron expression, such as：'0/5 * * * * ?'

# Database Discovery Configuration
discoveryTypes:
<discovery‑type‑name> (+): # Database discovery type name
type: # Database discovery type, such as: MySQL.NORMAL_REPLICATION, MySQL.MGR, openGauss.NORMAL_REPLICATION,

SphereEx:GaussDB_for_MySQL.NORMAL_REPLICATION
props (?):
group‑name: 92504d5b‑6dec‑11e8‑91ea‑246e9612aaf1 # Required parameters for database discovery types, such as MGR's

group‑name

Encryption

Configuration Item Explanation

rules:
‑ !ENCRYPT
tables:
<table‑name> (+): # Encrypt table name
columns:
<column‑name> (+): # Encrypted column name
dataType: # Logical column type
cipherColumn: # Ciphertext column name
cipherDataType: # Encrypted column type
assistedQueryColumn (?): # Query auxiliary column name
assistedQueryDataType: # Query auxiliary column type
plainColumn (?): # Plaintext column name
plainDataType: # Plaintext type
encryptorName: # Encryption algorithm name

queryWithCipherColumn(?): # Whether the table uses encrypted columns for query

# Encryption algorithm configuration
encryptors:
<encrypt‑algorithm‑name> (+): # Encryption and decryption algorithm name
type: # Encryption and decryption algorithm type
props: # Encryption and decryption algorithm attribute configuration
# ...

queryWithCipherColumn: # Whether query with cipher column for data encrypt. You can use plaintext to query if have.

# Key Storage Configuration
keyManagers:
<key‑manager‑name> (+): # Name of key storage manager
type: # Key storage manager type. Local storage and AWS cloud storage are supported.

182



Beijing SphereEx Technology Co., Ltd.

props: # Property configuration of key storage manager
# ...

Shadow DB

Configuration Item Explanation

rules:
‑ !SHADOW
dataSources:
shadowDataSource:
sourceDataSourceName: # Production data source name
shadowDataSourceName: # Shadow data source name

tables:
<table‑name>:
dataSourceNames: # Shadow table location shadow data source names
‑ <shadow‑data‑source>
shadowAlgorithmNames: # Shadow table location shadow algorithm names
‑ <shadow‑algorithm‑name>

defaultShadowAlgorithmName: # Default shadow algorithm name
shadowAlgorithms:
<shadow‑algorithm‑name> (+): # Shadow algorithm name
type: # Shadow algorithm type
props: # Shadow algorithm property configuration
# ...

SQL‑parser

Configuration Item Explanation

rules:
‑ !SQL_PARSER
sqlCommentParseEnabled: # Whether to parse SQL comments
sqlStatementCache: # SQL statement local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache
concurrencyLevel: # Local cache concurrency level, the maximum number of concurrent updates allowed by threads
parseTreeCache: # Parse tree local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache
concurrencyLevel: # Local cache concurrency level, the maximum number of concurrent updates allowed by threads

Mixed Rules

The overlay between rule items in a mixed configuration is associated by the data source name and the table name.
If the previous rule is aggregation‑oriented, the next rule needs to use the aggregated logical data source name config‑
uredby theprevious rulewhenconfiguring thedata source. Similarly, if theprevious rule is table aggregation‑oriented,
the next rule needs to use the aggregated logical table name configured by the previous rule when configuring the ta‑
ble.

183



Beijing SphereEx Technology Co., Ltd.

Configuration Item Explanation

dataSources: # Configure the real data source name.
write_ds:
# ...Omit specific configuration.
read_ds_0:
# ...Omit specific configuration.
read_ds_1:
# ...Omit specific configuration.

rules:
‑ !SHARDING # Configure data sharding rules.
tables:
t_user:
actualDataNodes: ds.t_user_${0..1} # Data source name 'ds' uses the logical data source name of the readwrite‑splitting

configuration.
tableStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: t_user_inline

shardingAlgorithms:
t_user_inline:
type: INLINE
props:
algorithm‑expression: t_user_${user_id % 2}

‑ !ENCRYPT # Configure data encryption rules.
tables:
t_user: # Table `t_user` is the name of the logical table that uses the data sharding configuration.
columns:
pwd:
plainColumn: plain_pwd
cipherColumn: cipher_pwd
encryptorName: encryptor_aes

encryptors:
encryptor_aes:
type: aes
props:
aes‑key‑value: 123456abc

‑ !READWRITE_SPLITTING # Configure readwrite‑splitting rules.
dataSources:
ds: # The logical data source name 'ds' for readwrite‑splitting is used in data sharding.
type: Static
props:
write‑data‑source‑name: write_ds # Use the real data source name 'write_ds'.
read‑data‑source‑names: read_ds_0, read_ds_1 # Use the real data source name 'read_ds_0', 'read_ds_1'.
loadBalancerName: roundRobin

loadBalancers:
roundRobin:
type: ROUND_ROBIN

props:
sql‑show: true

184



Beijing SphereEx Technology Co., Ltd.

7.1.4 JDBC Driver

Overview

DBPlusEngine‑Driver provides JDBCdriver, it permits user using ShardingSphere by configurationupdatingonly, with‑
out any code changes.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Driver Usage

Native Driver Usage

Class.forName("org.apache.shardingsphere.driver.ShardingSphereDriver");
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = DriverManager.getConnection(jdbcUrl);
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {
while(rs.next()) {
// ...

}
}

}

Database Connection Pool Usage

String driverClassName = "org.apache.shardingsphere.driver.ShardingSphereDriver";
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

// Use HikariCP as sample
HikariDataSource dataSource = new HikariDataSource();
dataSource.setDriverClassName(driverClassName);
dataSource.setJdbcUrl(jdbcUrl);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {
while(rs.next()) {

185



Beijing SphereEx Technology Co., Ltd.

// ...
}

}
}

Configuration Explanation

Driver Class Name

org.apache.shardingsphere.driver.ShardingSphereDriver

URL Configuration Explanation

■ Use jdbc:shardingsphere: as prefix
■ Configuration file: xxx.yaml, keep consist format with YAML Configuration
■ Configuration file loading rule:

• No prefix for loading from absolute path
• Prefix with classpath: for loading from java class path

7.1.5 Spring Boot Starter

Overview

DBPlusEngine‑Driver provides the official Spring Boot Starter to make it convenient for developers to integrate
DBPlusEngine‑Driver and Spring Boot.
The list of compatible SpringBoot versions is as follows:

1. SpringBoot 1.x
2. SpringBoot 2.x
3. SpringBoot 3.x (Experimental)

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core‑spring‑boot‑starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

186



Beijing SphereEx Technology Co., Ltd.

Use DBPlusEngine Data Source in Spring

Developers can use DataSource to inject to use native JDBC or ORM frameworks such as JPA, Hibernate or MyBatis.
Take native JDBC usage as an example:
@Resource
private DataSource dataSource;

Mode Configuration

Default is Memory mode.

Configuration Item Explanation

spring.shardingsphere.mode.type= # Type of mode configuration. Values could be: Cluster
spring.shardingsphere.mode.repository= # Persist repository configuration. Memory type does not need persist
spring.shardingsphere.mode.overwrite= # Whether overwrite persistent configuration with local configuration

Cluster Mode

spring.shardingsphere.mode.type=Cluster
spring.shardingsphere.mode.repository.type= # Type of persist repository
spring.shardingsphere.mode.repository.props.namespace= # Namespace of registry center
spring.shardingsphere.mode.repository.props.server‑lists= # Server lists of registry center
spring.shardingsphere.mode.repository.props.<key>= # Properties of persist repository
spring.shardingsphere.mode.overwrite= # Whether overwrite persistent configuration with local configuration

Please refer to Builtin Persist Repository List for more details about type of repository.

187



Beijing SphereEx Technology Co., Ltd.

Data Source

Use Native Data Source

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Actual data source name, multiple split by `,`

# <actual‑data‑source‑name> indicate name of data source name
spring.shardingsphere.datasource.<actual‑data‑source‑name>.type= # Full class name of database connection pool
spring.shardingsphere.datasource.<actual‑data‑source‑name>.driver‑class‑name= # Class name of database driver, ref property
of connection pool
spring.shardingsphere.datasource.<actual‑data‑source‑name>.jdbc‑url= # Database URL, ref property of connection pool
spring.shardingsphere.datasource.<actual‑data‑source‑name>.username= # Database username, ref property of connection pool
spring.shardingsphere.datasource.<actual‑data‑source‑name>.password= # Database password, ref property of connection pool
spring.shardingsphere.datasource.<actual‑data‑source‑name>.<xxx>= # ... Other properties for data source pool

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced with other
database drivers and connection pools.
# Configure actual data sources
spring.shardingsphere.datasource.names=ds1,ds2

# Configure the 1st data source
spring.shardingsphere.datasource.ds1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.driver‑class‑name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds1.jdbc‑url=jdbc:mysql://localhost:3306/ds1
spring.shardingsphere.datasource.ds1.username=root
spring.shardingsphere.datasource.ds1.password=

# Configure the 2nd data source
spring.shardingsphere.datasource.ds2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds2.driver‑class‑name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds2.jdbc‑url=jdbc:mysql://localhost:3306/ds2
spring.shardingsphere.datasource.ds2.username=root
spring.shardingsphere.datasource.ds2.password=

Use JNDI Data Source

If developer plan to use ShardingSphere‑JDBC in Web Server (such as Tomcat) with JNDI data source, spring.
shardingsphere.datasource.${datasourceName}.jndiName can be used as an alternative to series of configuration of
data source.

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Actual data source name, multiple split by `,`

# <actual‑data‑source‑name> indicate name of data source name
spring.shardingsphere.datasource.<actual‑data‑source‑name>.jndi‑name= # JNDI of data source

188



Beijing SphereEx Technology Co., Ltd.

Example

# Configure actual data sources
spring.shardingsphere.datasource.names=ds1,ds2

# Configure the 1st data source
spring.shardingsphere.datasource.ds1.jndi‑name=java:comp/env/jdbc/ds1
# Configure the 2nd data source
spring.shardingsphere.datasource.ds2.jndi‑name=java:comp/env/jdbc/ds2

Rules

Rules are pluggable part of DBPlusEngine. This chapter is a Spring Boot Starter rule configuration manual for
DBPlusEngine‑Driver.

Sharding

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration, please refer to the usage

# Standard sharding table configuration
spring.shardingsphere.rules.sharding.tables.<table‑name>.actual‑data‑nodes= # Describe data source names and actual tables,
delimiter as point, multiple data nodes separated with comma, support inline expression. Absent means sharding databases only.

# Databases sharding strategy, use default databases sharding strategy if absent. sharding strategy below can choose only one.

# For single sharding column scenario
spring.shardingsphere.rules.sharding.tables.<table‑name>.database‑strategy.standard.sharding‑column= # Sharding column
name
spring.shardingsphere.rules.sharding.tables.<table‑name>.database‑strategy.standard.sharding‑algorithm‑name= # Sharding
algorithm name

# For multiple sharding columns scenario
spring.shardingsphere.rules.sharding.tables.<table‑name>.database‑strategy.complex.sharding‑columns= # Sharding column
names, multiple columns separated with comma
spring.shardingsphere.rules.sharding.tables.<table‑name>.database‑strategy.complex.sharding‑algorithm‑name= # Sharding
algorithm name

# Sharding by hint
spring.shardingsphere.rules.sharding.tables.<table‑name>.database‑strategy.hint.sharding‑algorithm‑name= # Sharding
algorithm name

# Tables sharding strategy, same as database sharding strategy
spring.shardingsphere.rules.sharding.tables.<table‑name>.table‑strategy.xxx= # Omitted

# Auto sharding table configuraiton
spring.shardingsphere.rules.sharding.auto‑tables.<auto‑table‑name>.actual‑data‑sources= # data source names

spring.shardingsphere.rules.sharding.auto‑tables.<auto‑table‑name>.sharding‑strategy.standard.sharding‑column= # Sharding
column name
spring.shardingsphere.rules.sharding.auto‑tables.<auto‑table‑name>.sharding‑strategy.standard.sharding‑algorithm‑name= #
Auto sharding algorithm name

# Key generator strategy configuration
spring.shardingsphere.rules.sharding.tables.<table‑name>.key‑generate‑strategy.column= # Column name of key generator
spring.shardingsphere.rules.sharding.tables.<table‑name>.key‑generate‑strategy.key‑generator‑name= # Key generator name

spring.shardingsphere.rules.sharding.binding‑tables[0]= # Binding table name

189



Beijing SphereEx Technology Co., Ltd.

spring.shardingsphere.rules.sharding.binding‑tables[1]= # Binding table name
spring.shardingsphere.rules.sharding.binding‑tables[x]= # Binding table name

spring.shardingsphere.rules.sharding.broadcast‑tables[0]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast‑tables[1]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast‑tables[x]= # Broadcast tables

spring.shardingsphere.sharding.default‑database‑strategy.xxx= # Default strategy for database sharding
spring.shardingsphere.sharding.default‑table‑strategy.xxx= # Default strategy for table sharding
spring.shardingsphere.sharding.default‑key‑generate‑strategy.xxx= # Default Key generator strategy
spring.shardingsphere.sharding.default‑sharding‑column= # Default sharding column name

# Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding‑algorithms.<sharding‑algorithm‑name>.type= # Sharding algorithm type
spring.shardingsphere.rules.sharding.sharding‑algorithms.<sharding‑algorithm‑name>.props.xxx=# Sharding algorithm
properties

# Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key‑generators.<key‑generate‑algorithm‑name>.type= # Key generate algorithm type
spring.shardingsphere.rules.sharding.key‑generators.<key‑generate‑algorithm‑name>.props.xxx= # Key generate algorithm
properties

Please refer to Built‑in Sharding Algorithm List and Built‑in Key Generate Algorithm List for more details about type of
algorithm.

Attention

Inline expression identifier can use ${...} or $‑>{...}, but ${...} is conflict with spring placeholder of properties, so use
$‑>{...} on spring environment is better.

Readwrite splitting

Configuration Item Explanation

Static Readwrite‑splitting

spring.shardingsphere.datasource.names= # Omit the data source configuration, please refer to the usage

spring.shardingsphere.rules.readwrite‑splitting.data‑sources.<readwrite‑splitting‑data‑source‑name>.static‑strategy.write‑data‑
source‑name= # Write data source name
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.<readwrite‑splitting‑data‑source‑name>.static‑strategy.read‑data‑
source‑names= # Read data source names, multiple data source names separated with comma
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.<readwrite‑splitting‑data‑source‑name>.load‑balancer‑name= #
Load balance algorithm name

# Load balance algorithm configuration
spring.shardingsphere.rules.readwrite‑splitting.load‑balancers.<load‑balance‑algorithm‑name>.type= # Load balance algorithm
type
spring.shardingsphere.rules.readwrite‑splitting.load‑balancers.<load‑balance‑algorithm‑name>.props.xxx= # Load balance
algorithm properties

190



Beijing SphereEx Technology Co., Ltd.

Dynamic Readwrite‑splitting

spring.shardingsphere.datasource.names= # Omit the data source configuration, please refer to the usage

spring.shardingsphere.rules.readwrite‑splitting.data‑sources.<readwrite‑splitting‑data‑source‑name>.dynamic‑strategy.auto‑
aware‑data‑source‑name= # Database discovery logic data source name
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.<readwrite‑splitting‑data‑source‑name>.dynamic‑strategy.write‑
data‑source‑query‑enabled= # All read data source are offline, write data source whether the data source is responsible for read
traffic
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.<readwrite‑splitting‑data‑source‑name>.load‑balancer‑name= #
Load balance algorithm name

# Load balance algorithm configuration
spring.shardingsphere.rules.readwrite‑splitting.load‑balancers.<load‑balance‑algorithm‑name>.type= # Load balance algorithm
type
spring.shardingsphere.rules.readwrite‑splitting.load‑balancers.<load‑balance‑algorithm‑name>.props.xxx= # Load balance
algorithm properties

Please refer to Built‑in LoadBalance AlgorithmList formore details about type of algorithm. Please refer to UseNorms
for more details about query consistent routing.

HA

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration, please refer to the usage

spring.shardingsphere.rules.database‑discovery.data‑sources.<database‑discovery‑data‑source‑name>.data‑source‑names= #
Data source names, multiple data source names separated with comma. Such as: ds_0, ds_1
spring.shardingsphere.rules.database‑discovery.data‑sources.<database‑discovery‑data‑source‑name>.discovery‑heartbeat‑
name= # Detect heartbeat name
spring.shardingsphere.rules.database‑discovery.data‑sources.<database‑discovery‑data‑source‑name>.discovery‑type‑name= #
Database discovery type name

spring.shardingsphere.rules.database‑discovery.discovery‑heartbeats.<discovery‑heartbeat‑name>.props.keep‑alive‑cron= #
This is cron expression, such as：'0/5 * * * * ?'

spring.shardingsphere.rules.database‑discovery.discovery‑types.<discovery‑type‑name>.type= # Database discovery type, such
as: MGR、openGauss
spring.shardingsphere.rules.database‑discovery.discovery‑types.<discovery‑type‑name>.props.group‑name= # Required
parameters for database discovery types, such as MGR's group‑name

Encryption

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration, please refer to the user manual

spring.shardingsphere.rules.encrypt.tables.<table‑name>.query‑with‑cipher‑column= # Whether the table uses cipher columns
for query
spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.data‑type= # Logical column type
spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.cipher‑column= # Encrypted column name
spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.cipher‑data‑type= # Encrypted column type
spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.assisted‑query‑column= # Query auxiliary
column name
spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.assisted‑query‑data‑type= # Query auxiliary
column type
spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.plain‑column= # Plaintext column name

191



Beijing SphereEx Technology Co., Ltd.

spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.plain‑data‑type= # Plaintext column type
spring.shardingsphere.rules.encrypt.tables.<table‑name>.columns.<column‑name>.encryptor‑name= # Encryption algorithm
name

# Encryption algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.<encrypt‑algorithm‑name>.type= # Encryption algorithm type
spring.shardingsphere.rules.encrypt.encryptors.<encrypt‑algorithm‑name>.props.xxx= # Encryption algorithm attribute
configuration

spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # Whether query with cipher column for data encrypt. User you
can use plaintext to query if have.

Example

spring.shardingsphere.rules.encrypt.encryptors.pwd‑encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd‑encryptor.props.aes‑key‑value=123456ab

spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher‑column=pwd_encrypt
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.data‑type=INT NOT NULL
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher‑data‑type=VARCHAR(200) NOT NULL
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.plain‑column=pwd_plain
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.plain‑data‑type=INT NOT NULL
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.assisted‑query‑column=pwd_assisted
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.assisted‑query‑data‑type= VARCHAR(200) NOT NULL
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor‑name=pwd‑encryptor

Please refer to Built‑in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration, please refer to the usage

spring.shardingsphere.rules.shadow.data‑sources.shadow‑data‑source.source‑data‑source‑name= # Production data source
name
spring.shardingsphere.rules.shadow.data‑sources.shadow‑data‑source.shadow‑data‑source‑name= # Shadow data source name

spring.shardingsphere.rules.shadow.tables.<table‑name>.data‑source‑names= # Shadow table location shadow data source
names (multiple values are separated by ",")
spring.shardingsphere.rules.shadow.tables.<table‑name>.shadow‑algorithm‑names= # Shadow table location shadow algorithm
names (multiple values are separated by ",")

spring.shardingsphere.rules.shadow.defaultShadowAlgorithmName= # Default shadow algorithm name，optional item.

spring.shardingsphere.rules.shadow.shadow‑algorithms.<shadow‑algorithm‑name>.type= # Shadow algorithm type
spring.shardingsphere.rules.shadow.shadow‑algorithms.<shadow‑algorithm‑name>.props.xxx= # Shadow algorithm property
configuration

192



Beijing SphereEx Technology Co., Ltd.

SQL Parser

Configuration Item Explanation

spring.shardingsphere.rules.sql‑parser.sql‑comment‑parse‑enabled= # Whether to parse SQL comments

spring.shardingsphere.rules.sql‑parser.sql‑statement‑cache.initial‑capacity= # Initial capacity of SQL statement local cache
spring.shardingsphere.rules.sql‑parser.sql‑statement‑cache.maximum‑size= # Maximum capacity of SQL statement local cache
spring.shardingsphere.rules.sql‑parser.sql‑statement‑cache.concurrency‑level= # SQL statement local cache concurrency level,
the maximum number of concurrent updates allowed by threads

spring.shardingsphere.rules.sql‑parser.parse‑tree‑cache.initial‑capacity= # Initial capacity of parse tree local cache
spring.shardingsphere.rules.sql‑parser.parse‑tree‑cache.maximum‑size= # Maximum local cache capacity of parse tree
spring.shardingsphere.rules.sql‑parser.parse‑tree‑cache.concurrency‑level= # The local cache concurrency level of the parse tree.
The maximum number of concurrent updates allowed by threads

Mixed Rules

Configuration Item Explanation

# data source configuration
spring.shardingsphere.datasource.names= write‑ds0,write‑ds1,write‑ds0‑read0,write‑ds1‑read0

spring.shardingsphere.datasource.write‑ds0.url= # Database URL connection
spring.shardingsphere.datasource.write‑ds0.type= # Database connection pool type name
spring.shardingsphere.datasource.write‑ds0.driver‑class‑name= # Database driver class name
spring.shardingsphere.datasource.write‑ds0.username= # Database username
spring.shardingsphere.datasource.write‑ds0.password= # Database password
spring.shardingsphere.datasource.write‑ds0.xxx= # Other properties of database connection pool

spring.shardingsphere.datasource.write‑ds1.url= # Database URL connection
# ...Omit specific configuration.

spring.shardingsphere.datasource.write‑ds0‑read0.url= # Database URL connection
# ...Omit specific configuration.

spring.shardingsphere.datasource.write‑ds1‑read0.url= # Database URL connection
# ...Omit specific configuration.

# Sharding rules configuration
# Databases sharding strategy
spring.shardingsphere.rules.sharding.default‑database‑strategy.standard.sharding‑column=user_id
spring.shardingsphere.rules.sharding.default‑database‑strategy.standard.sharding‑algorithm‑name=default‑database‑strategy‑
inline
# Binding table rules configuration ,andmultiple groups of binding‑tables configured with arrays
spring.shardingsphere.rules.sharding.binding‑tables[0]=t_user,t_user_detail
spring.shardingsphere.rules.sharding.binding‑tables[1]= # Binding table names,multiple table name are separated by commas
spring.shardingsphere.rules.sharding.binding‑tables[x]= # Binding table names,multiple table name are separated by commas
# Broadcast table rules configuration
spring.shardingsphere.rules.sharding.broadcast‑tables= # Broadcast table names,multiple table name are separated by commas

# Table sharding strategy
# The enumeration value of `ds_$‑>{0..1}` is the name of the logical data source configured with readwrite‑splitting
spring.shardingsphere.rules.sharding.tables.t_user.actual‑data‑nodes=ds_$‑>{0..1}.t_user_$‑>{0..1}
spring.shardingsphere.rules.sharding.tables.t_user.table‑strategy.standard.sharding‑column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.table‑strategy.standard.sharding‑algorithm‑name=user‑table‑strategy‑inline

# Data encrypt configuration
# Table `t_user` is the name of the logical table that uses for data sharding configuration.
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher‑column=username

193



Beijing SphereEx Technology Co., Ltd.

spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor‑name=name‑encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher‑column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor‑name=pwd‑encryptor

# Data encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.name‑encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name‑encryptor.props.aes‑key‑value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd‑encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd‑encryptor.props.aes‑key‑value=123456abc

# Key generate strategy configuration
spring.shardingsphere.rules.sharding.tables.t_user.key‑generate‑strategy.column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.key‑generate‑strategy.key‑generator‑name=snowflake

# Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding‑algorithms.default‑database‑strategy‑inline.type=INLINE
# The enumeration value of `ds_$‑>{user_id % 2}` is the name of the logical data source configured with readwrite‑splitting
spring.shardingsphere.rules.sharding.sharding‑algorithms.default‑database‑strategy‑inline.algorithm‑expression=ds$‑>{user_id
% 2}
spring.shardingsphere.rules.sharding.sharding‑algorithms.user‑table‑strategy‑inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding‑algorithms.user‑table‑strategy‑inline.algorithm‑expression=t_user_$‑>{user_id %
2}

# Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key‑generators.snowflake.type=SNOWFLAKE

# read query configuration
# ds_0,ds_1 is the logical data source name of the readwrite‑splitting
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_0.type=Static
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_0.props.write‑data‑source‑name=write‑ds0
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_0.props.read‑data‑source‑names=write‑ds0‑read0
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_0.load‑balancer‑name=read‑random
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_1.type=Static
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_1.props.write‑data‑source‑name=write‑ds1
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_1.props.read‑data‑source‑names=write‑ds1‑read0
spring.shardingsphere.rules.readwrite‑splitting.data‑sources.ds_1.load‑balancer‑name=read‑random

# Load balance algorithm configuration
spring.shardingsphere.rules.readwrite‑splitting.load‑balancers.read‑random.type=RANDOM

7.1.6 Spring Namespace

Overview

DBPlusEngine‑Driver provides official Spring Namespace to make convenient for developers to integrate
DBPlusEngine‑Driver and Spring.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core‑spring‑namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

194



Beijing SphereEx Technology Co., Ltd.

Configure Spring Bean

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‑5.0.0.xsd
<shardingsphere:data‑source />

Name T y p e Description
id A t t r i b u t

e
Spring Bean Id

sch ema‑ name (?) A t t r i b u t
e

JDBC data source alias

d ata‑ sour ce‑n
ames

A t t r i b u t
e

Data source name, multiple data source names are separated by commas

r ule‑ refs A t t r i b u t
e

Rule name, multiple rule names are separated by commas

mode (?) T a g Mode configuration
p rops (?) T a g Properties configuration, Please refer to Properties Confi guration for more

details

Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema‑instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring‑beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource.xsd
">

<shardingsphere:data‑source id="ds" schema‑name="foo_schema" data‑source‑names="..." rule‑refs="...">
<shardingsphere:mode type="..." />
<props>
<prop key="xxx.xxx">${xxx.xxx}</prop>

</props>
</shardingsphere:data‑source>

</beans>

Use DBPlusEngine Data Source in Spring

Same with Spring Boot Starter.

Mode Configuration

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‑5.1.0.xsd
<shardingsphere:mode />

195

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.xsd


Beijing SphereEx Technology Co., Ltd.

Name T ype Description D efault
Value

type Att rib
ute Type of mode configuration. Values could be: Cluster

reposi tory‑ref
(?)

Att rib
ute

Persist repository configuration. Memory type does not need persist

o verwrite (?) Att rib
ute

Whether overwrite persistent configuration with local configuration false

Memory Mode

It is the default value.

Example

<?xml version="1.0" encoding="UTF‑8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema‑instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring‑beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource.xsd">

<shardingsphere:data‑source id="ds" schema‑name="foo_schema" data‑source‑names="..." rule‑refs="..." />
</beans>

196

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd


Beijing SphereEx Technology Co., Ltd.

Cluster Mode

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/mode‑repository/cluster/repository‑5.0.0.x
sd

Name Type Description
id Attribute Name of persist repository bean
type Attribute Type of persist repository
namespace Attribute Namespace of registry center
server‑lists Attribute Server lists of registry center
props (?) Tag Properties of persist repository

Example

<?xml version="1.0" encoding="UTF‑8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema‑instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/shardingsphere/datasource"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode‑repository/cluster"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring‑beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode‑repository/cluster
http://shardingsphere.apache.org/schema/shardingsphere/mode‑repository/cluster/repository.xsd">

<cluster:repository id="clusterRepository" type="Zookeeper" namespace="regCenter" server‑lists="localhost:3182">
<props>
<prop key="max‑retries">3</prop>
<prop key="operation‑timeout‑milliseconds">1000</prop>

</props>
</cluster:repository>

<shardingsphere:data‑source id="ds" schema‑name="foo_schema" data‑source‑names="..." rule‑refs="...">
<shardingsphere:mode type="Cluster" repository‑ref="clusterRepository" overwrite="true" />

</shardingsphere:data‑source>
</beans>

Please refer to Builtin Persist Repository List for more details about type of repository.

197

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd


Beijing SphereEx Technology Co., Ltd.

Data Source

Any data source configured as spring bean can be cooperated with spring namespace.

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced with other
database drivers and connection pools.
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema‑instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring‑beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource.xsd
">

<bean id="ds1" class="com.zaxxer.hikari.HikariDataSource" destroy‑method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="ds2" class="com.zaxxer.hikari.HikariDataSource" destroy‑method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds2" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<shardingsphere:data‑source id="ds" schema‑name="foo_schema" data‑source‑names="ds1,ds2" rule‑refs="..." />
</beans>

Rules

Rules are pluggable part of DBPlusEngine. This chapter is a Spring namespace rule configuration manual for
DBPlusEngine‑Driver.

Sharding

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‑5.1.0.xsd
<sharding:rule />

Name T ype Description
id A ttri bute Spring Bean Id
table‑rules (?) Tag Sharding table rule configuration
auto‑table‑rules (?) Tag Automatic sharding table rule configuration
binding‑table‑rules (?) Tag Binding table rule configuration
broadcast‑table‑rules (?) Tag Broadcast table rule configuration
def ault‑database‑strategy‑ref (?) A ttri bute Default database strategy name
default‑table‑strategy‑ref (?) A ttri bute Default table strategy name
default ‑key‑generate‑strategy‑ref (?) A ttri bute Default key generate strategy name
default‑sharding‑column (?) A ttri bute Default sharding column name

198

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.1.0.xsd


Beijing SphereEx Technology Co., Ltd.

<sharding:table‑rule />

Name Type Description
logic‑table At

trib‑
ute

Logic table name

actual‑data‑
nodes

At
trib‑
ute

Describe data source names and actual tables, delimiter as point, multiple data nodes sep‑
arated with comma, support inline expression. Absent means sharding databases only.

actual‑data‑
sources

At
trib‑
ute

Data source names for auto sharding table

database‑
strategy‑ref

At
trib‑
ute

Database strategy name for standard sharding table

table‑
strategy‑ref

At
trib‑
ute

Table strategy name for standard sharding table

sharding‑
strategy‑ref

At
trib‑
ute

sharding strategy name for auto sharding table

key‑
generate‑
strategy‑ref

At
trib‑
ute

Key generate strategy name

<sharding:binding‑table‑rules />

Name Type Description
binding‑table‑rule (+) Tag Binding table rule configuration

<sharding:binding‑table‑rule />

Name
Type

Description

logi c‑tables Attr ibute Binding table name, multiple tables
separated with comma

<sharding:broadcast‑table‑rules />

Name Type Description
broadcast‑table‑rule (+) Tag Broadcast table rule configuration

<sharding:broadcast‑table‑rule />

Name Type Description
table Attribute Broadcast table name

<sharding:standard‑strategy />

Name Type Description
id Attribute Standard sharding strategy name
sharding‑column Attribute Sharding column name
algorithm‑ref Attribute Sharding algorithm name

<sharding:complex‑strategy />

199



Beijing SphereEx Technology Co., Ltd.

Name T ype Description
id A ttri bute Complex sharding strategy name
shardi ng‑columns A ttri bute Sharding column names, multiple columns separated with comma
alg orithm‑ref A ttri bute Sharding algorithm name

<sharding:hint‑strategy />

Name Type Description
id Attribute Hint sharding strategy name
algorithm‑ref Attribute Sharding algorithm name

<sharding:none‑strategy />

Name Type Description
id Attribute Sharding strategy name

<sharding:key‑generate‑strategy />

Name Type Description
id Attribute Key generate strategy name
column Attribute Key generate column name
algorithm‑ref Attribute Key generate algorithm name

<sharding:sharding‑algorithm />

Name Type Description
id Attribute Sharding algorithm name
type Attribute Sharding algorithm type
props (?) Tag Sharding algorithm properties

<sharding:key‑generate‑algorithm />

Name Type Description
id Attribute Key generate algorithm name
type Attribute Key generate algorithm type
props (?) Tag Key generate algorithm properties

Please refer to Built‑in Sharding Algorithm List and Built‑in Key Generate Algorithm List for more details about type of
algorithm.

Attention

Inline expression identifier can use ${...} or $‑>{...}, but ${...} is conflict with spring placeholder of properties, so use
$‑>{...} on spring environment is better.

200



Beijing SphereEx Technology Co., Ltd.

Readwrite‑splitting

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/readwrite‑splitting/readwrite‑splitting‑5.1.
2.xsd
<readwrite‑splitting:rule />

Name ■

Type*
Description

id Attr ibute Spring Bean Id
data‑source‑rule (+) Tag Readwrite‑splitting data source rule

configuration

<readwrite‑splitting:data‑source‑rule />

Name Type Description
id Attribute Readwrite‑splitting data source rule name
static‑strategy Tag Static Readwrite‑splitting type
dynamic‑strategy Tag Dynamic Readwrite‑splitting type
l oad‑balance‑algorithm‑ref Attribute Load balance algorithm name

<readwrite‑splitting:static‑strategy />

Name
T y p e

Description

id A t t r i b u t e Static readwrite‑splitting name
write‑d ata‑source‑name A t t r i b u t e Write data source name
read‑da ta‑source‑names A t t r i b u t e Read data source names, multiple

data source names separated with
comma

load‑balanc e‑algorithm‑ref A t t r i b u t e Load balance algorithm name

<readwrite‑splitting:dynamic‑strategy />

Name
T y p e

Description

id A t t r i b u t e Dynamic readwrite‑splitting name
aut o‑aware‑data ‑source‑name A t t r i b u t e Database discovery logic data

source name
write‑d ata‑source‑q uery‑enabled A t t r i b u t e All read data source are offline, write

data sourcewhether the data source
is responsible for read traffic

lo ad‑balance‑a lgorithm‑ref A t t r i b u t e Load balance algorithm name

<readwrite‑splitting:load‑balance‑algorithm />

Name Type Description
id Attribute Load balance algorithm name
type Attribute Load balance algorithm type
props (?) Tag Load balance algorithm properties

Please refer to Built‑in LoadBalance AlgorithmList formore details about type of algorithm. Please refer to UseNorms
for more details about query consistent routing.

201

http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.2.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.2.xsd


Beijing SphereEx Technology Co., Ltd.

HA

Configuration Item Explanation

Namespace：http://shardingsphere.apache.org/schema/shardingsphere/database‑discovery/database‑discovery‑
5.1.0.xsd
<database‑discovery:rule />

Name Type Description
id Attribute Spring Bean Id
data‑source‑rule (+) tag Data source rule configuration
discovery‑heartbeat (+) tag Detect heartbeat rule configuration

<database‑discovery:data‑source‑rule />

Name Ty pe Description
id A tt ri bu

te
Data source rule Id

data‑ source‑names A tt ri bu
te

Data source names,multiple data source names separatedwith comma. Such
as: ds_0, ds_1

discovery‑he artbeat‑
name

A tt ri bu
te

Detect heartbeat name

discove ry‑type‑name A tt ri bu
te

Database discovery type name

<database‑discovery:discovery‑heartbeat />

Name Type Description
id Attr

ibute
Detect heartbeat Id

props tag Detect heartbeat attribute configuration, keep‑alive‑cron configuration, cron expression. Such
as:‘0/5 * * * * ?’

<database‑discovery:discovery‑type />

Name Type Description
id Attr ibute Database discovery type Id
type Attr ibute Database discovery type, such as: MGR、openGauss
p rops (?) tag Required parameters for database discovery types, such as MGR’s group‑name

Encryption

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt‑5.1.0.xsd
<encrypt:rule />

Name T y p e Description D ef au lt V
al ue

id A t t r i b
u t e

Spring Bean Id

quer yWithCipher‑
Column (?)

A t t r i b
u t e

Whether query with cipher column for data encrypt. User you can
use plaintext to query if have

tr ue

table (+) T a g Encrypt table configuration

202

http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.1.0.xsd


Beijing SphereEx Technology Co., Ltd.

<encrypt:table />

Name Type Description
name A ttri

bute
Encrypt table name

column (+) Tag Encrypt column configuration
query‑with‑cipher‑
column(?)

A ttri
bute

Whether query with cipher column for data encrypt. User you can use plain‑
text to query if have

<encrypt:column />

Name Type Description
logic‑column Attribute Encrypted column logical name
data‑type(?) Attribute Logical column type
cipher‑column Attribute Encrypted column name
cipher‑data‑type(?) Attribute Encrypted column type
assisted‑query‑column (?) Attribute Query auxiliary column name
assisted‑query‑data‑type(?) Attribute Query auxiliary column type
plain‑column (?) Attribute Plaintext column name
plain‑data‑type(?) Attribute Plaintext column type
encrypt‑algorithm‑ref Attribute Encryption algorithm name

<encrypt:encrypt‑algorithm />

Name Type Description
id Attribute Encrypt algorithm name
type Attribute Encrypt algorithm type
props (?) Tag Encrypt algorithm properties

Example

<encrypt:encrypt‑algorithm id="name_encryptor" type="AES">
<props>
<prop key="aes‑key‑value">123456</prop>

</props>
</encrypt:encrypt‑algorithm>

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user">
<encrypt:column logic‑column="pwd" cipher‑column="pwd_encrypt" data‑type="VARCHAR(20) NOT NULL" cipher‑data‑

type="VARCHAR(200) NOT NULL" plain‑column="pwd_plain" plain‑data‑type="VARCHAR(20) NOT NULL" assisted‑query‑column=
"pwd_assisted" assisted‑query‑data‑type="VARCHAR(20) NOT NULL" encrypt‑algorithm‑ref="name_encryptor" />
</encrypt:table>

</encrypt:rule>

Please refer to Built‑in Encrypt Algorithm List for more details about type of algorithm.

203



Beijing SphereEx Technology Co., Ltd.

Shadow DB

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow‑5.1.0.xsd
<shadow:rule />

Name Type Description
id Attribute Spring Bean Id
d ata‑source(?) Tag Shadow data source configuration
defaul t‑shadow‑algo rithm‑name(?) Tag Default shadow algorithm configuration
sh adow‑table(?) Tag Shadow table configuration

<shadow:data‑source />

Name Type Description
id Attribute Spring Bean Id
source‑data‑source‑name Attribute Production data source name
shadow‑data‑source‑name Attribute Shadow data source name

<shadow:default‑shadow‑algorithm‑name />

Name Type Description
name Attribute Default shadow algorithm name

<shadow:shadow‑table />

Name Type Description
name At‑

tribute
Shadow table name

data‑
sources

At‑
tribute

Shadow table location shadow data source names (multiple values are separated by“,”
)

algorithm
(?)

Tag Shadow table location shadow algorithm configuration

<shadow:algorithm />

Name Type Description
shadow‑algorithm‑ref Attribute Shadow table location shadow algorithm name

<shadow:shadow‑algorithm />

Name Type Description
id Attribute Shadow algorithm name
type Attribute Shadow algorithm type
props (?) Attribute Shadow algorithm property configuration

204

http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow-5.1.0.xsd


Beijing SphereEx Technology Co., Ltd.

SQL Parser

Configuration Item Explanation

Namespace：http://shardingsphere.apache.org/schema/shardingsphere/sql‑parser/sql‑parser‑5.1.0.xsd
<sql‑parser:rule />

Name Type Description
id Attribute Spring Bean Id
sql‑comment‑parse‑enable Attribute Whether to parse SQL comments
parse‑tree‑cache‑ref Attribute Parse tree local cache name
sql‑statement‑cache‑ref Attribute SQL statement local cache name

<sql‑parser:cache‑option />

Name T ype Description
id Att rib

ute
Local cache configuration item name

initial‑capacity Att rib
ute

Initial capacity of local cache

maximum‑size Att rib
ute

Maximum capacity of local cache

concurrency‑
level

Att rib
ute

Local cache concurrency level, themaximumnumber of concurrent updates allowed
by threads

Mixed Rules

Configuration Item Explanation

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema‑instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/shardingsphere/datasource"
xmlns:readwrite‑splitting="http://shardingsphere.apache.org/schema/shardingsphere/readwrite‑splitting"
xmlns:encrypt="http://shardingsphere.apache.org/schema/shardingsphere/encrypt"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring‑beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite‑splitting
http://shardingsphere.apache.org/schema/shardingsphere/readwrite‑splitting/readwrite‑splitting.xsd
http://shardingsphere.apache.org/schema/shardingsphere/encrypt
http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt.xsd
">

<bean id="write_ds0" class=" com.zaxxer.hikari.HikariDataSource" init‑method="init" destroy‑method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/write_ds?useSSL=false&amp;useUnicode=true&amp;

characterEncoding=UTF‑8" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="read_ds0_0" class=" com.zaxxer.hikari.HikariDataSource" init‑method="init" destroy‑method="close">
<!‑‑ ...Omit specific configuration. ‑‑>

</bean>

<bean id="read_ds0_1" class=" com.zaxxer.hikari.HikariDataSource" init‑method="init" destroy‑method="close">
<!‑‑ ...Omit specific configuration. ‑‑>

205

http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.1.0.xsd


Beijing SphereEx Technology Co., Ltd.

</bean>

<bean id="write_ds1" class=" com.zaxxer.hikari.HikariDataSource" init‑method="init" destroy‑method="close">
<!‑‑ ...Omit specific configuration. ‑‑>

</bean>

<bean id="read_ds1_0" class=" com.zaxxer.hikari.HikariDataSource" init‑method="init" destroy‑method="close">
<!‑‑ ...Omit specific configuration. ‑‑>

</bean>

<bean id="read_ds1_1" class=" com.zaxxer.hikari.HikariDataSource" init‑method="init" destroy‑method="close">
<!‑‑ ...Omit specific configuration. ‑‑>

</bean>

<!‑‑ load balance algorithm configuration for readwrite‑splitting ‑‑>
<readwrite‑splitting:load‑balance‑algorithm id="randomStrategy" type="RANDOM" />

<!‑‑ readwrite‑splitting rule configuration ‑‑>
<readwrite‑splitting:rule id="readWriteSplittingRule">
<readwrite‑splitting:data‑source‑rule id="ds_0" type="Static" load‑balance‑algorithm‑ref="randomStrategy">
<props>
<prop key="write‑data‑source‑name">write_ds0</prop>
<prop key="read‑data‑source‑names">read_ds0_0, read_ds0_1</prop>

</props>
</readwrite‑splitting:data‑source‑rule>
<readwrite‑splitting:data‑source‑rule id="ds_1" type="Static" load‑balance‑algorithm‑ref="randomStrategy">
<props>
<prop key="write‑data‑source‑name">write_ds1</prop>
<prop key="read‑data‑source‑names">read_ds1_0, read_ds1_1</prop>

</props>
</readwrite‑splitting:data‑source‑rule>

</readwrite‑splitting:rule>

<!‑‑ sharding strategy configuration ‑‑>
<sharding:standard‑strategy id="databaseStrategy" sharding‑column="user_id" algorithm‑ref=

"inlineDatabaseStrategyAlgorithm" />
<sharding:standard‑strategy id="orderTableStrategy" sharding‑column="order_id" algorithm‑ref=

"inlineOrderTableStrategyAlgorithm" />
<sharding:standard‑strategy id="orderItemTableStrategy" sharding‑column="order_item_id" algorithm‑ref=

"inlineOrderItemTableStrategyAlgorithm" />

<sharding:sharding‑algorithm id="inlineDatabaseStrategyAlgorithm" type="INLINE">
<props>
<!‑‑ the expression enumeration is the logical data source name of the readwrite‑splitting configuration ‑‑>
<prop key="algorithm‑expression">ds_${user_id % 2}</prop>

</props>
</sharding:sharding‑algorithm>
<sharding:sharding‑algorithm id="inlineOrderTableStrategyAlgorithm" type="INLINE">
<props>
<prop key="algorithm‑expression">t_order_${order_id % 2}</prop>

</props>
</sharding:sharding‑algorithm>
<sharding:sharding‑algorithm id="inlineOrderItemTableStrategyAlgorithm" type="INLINE">
<props>
<prop key="algorithm‑expression">t_order_item_${order_item_id % 2}</prop>

</props>
</sharding:sharding‑algorithm>

<!‑‑ sharding rule configuration ‑‑>
<sharding:rule id="shardingRule">
<sharding:table‑rules>
<!‑‑ the expression 'ds_${0..1}' enumeration is the logical data source name of the readwrite‑splitting configuration ‑‑>
<sharding:table‑rule logic‑table="t_order" actual‑data‑nodes="ds_${0..1}.t_order_${0..1}" database‑strategy‑ref=

"databaseStrategy" table‑strategy‑ref="orderTableStrategy" key‑generate‑strategy‑ref="orderKeyGenerator"/>

206



Beijing SphereEx Technology Co., Ltd.

<sharding:table‑rule logic‑table="t_order_item" actual‑data‑nodes="ds_${0..1}.t_order_item_${0..1}" database‑strategy‑
ref="databaseStrategy" table‑strategy‑ref="orderItemTableStrategy" key‑generate‑strategy‑ref="itemKeyGenerator"/>

</sharding:table‑rules>
<sharding:binding‑table‑rules>
<sharding:binding‑table‑rule logic‑tables="t_order, t_order_item"/>

</sharding:binding‑table‑rules>
<sharding:broadcast‑table‑rules>
<sharding:broadcast‑table‑rule table="t_address"/>

</sharding:broadcast‑table‑rules>
</sharding:rule>

<!‑‑ data encrypt configuration ‑‑>
<encrypt:encrypt‑algorithm id="name_encryptor" type="AES">
<props>
<prop key="aes‑key‑value">123456</prop>

</props>
</encrypt:encrypt‑algorithm>
<encrypt:encrypt‑algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user">
<encrypt:column logic‑column="username" cipher‑column="username" plain‑column="username_plain" encrypt‑

algorithm‑ref="name_encryptor" />
<encrypt:column logic‑column="pwd" cipher‑column="pwd" assisted‑query‑column="assisted_query_pwd" encrypt‑

algorithm‑ref="pwd_encryptor" />
</encrypt:table>

</encrypt:rule>

<!‑‑ datasource configuration ‑‑>
<!‑‑ the element data‑source‑names's value is all of the datasource name ‑‑>
<shardingsphere:data‑source id="readQueryDataSource" data‑source‑names="write_ds0, read_ds0_0, read_ds0_1, write_

ds1, read_ds1_0, read_ds1_1"
rule‑refs="readWriteSplittingRule, shardingRule, encryptRule" >
<props>
<prop key="sql‑show">true</prop>

</props>
</shardingsphere:data‑source>

</beans>

7.1.7 Properties Configuration

DBPlusEngine provides the way of property configuration to configure system level configuration.

207



Beijing SphereEx Technology Co., Ltd.

Configuration Item Explanation

Name Data
Type

Description De‑
fault
Value

sql‑show (?) booleanWhether show SQL or not in log. Print SQL details can help developers debug easier.
The log details include: logic SQL, actual SQL and SQL parse result. Enable this prop‑
erty will log into log topic ShardingSphere‑SQL, log level is INFO

false

sql‑simple (?) booleanWhether show SQL details in simple style false
kernel‑
executor‑size
(?)

int Themax thread size ofworker group to execute SQL.OneShardingSphereDataSource
will use a independent thread pool, it does not share thread pool even different data
source in same JVM

infi‑
nite

max‑
connections‑
s ize‑per‑
query (?)

int Max opened connection size for each query 1

ch eck‑table‑
met adata‑
enabled (?)

booleanWhether validate table meta data consistency when application startup or updated false

che ck‑
duplicate‑
table‑
enabled
(?)

booleanWhether validate duplicate table when application startup or updated false

sql‑feder
ation‑
enabled
(?)

booleanWhether enable SQL federation false

7.1.8 Builtin Algorithm

Introduction

DBPlusEngine allows developers to implement algorithms via SPI; At the same time, DBPlusEngine also provides a
couple of builtin algorithms for simplify developers.

208



Beijing SphereEx Technology Co., Ltd.

Usage

The builtin algorithms are configured by type and props. Type is defined by the algorithm in SPI, and props is used to
deliver the customized parameters of the algorithm.
Nomatter which configuration type is used, the configured algorithm is named and passed to the corresponding rule
configuration. This chapter distinguishes and lists all the builtin algorithms of DBPlusEngine according to its functions
for developers’reference.

Metadata Repository

Background

DBPlusEngine provides different metadata persistence methods for different running modes. Users can choose an
appropriate way to store metadata while configuring the running mode.

Parameters

ZooKeeper Repository

Type: ZooKeeper
Mode: Cluster
Attributes:

Name Type Description Default Value
retryIn tervalMilliseconds int Milliseconds of retry interval 500
maxRetries int Max retries of client connection 3
timeToLiveSeconds int Seconds of ephemeral data live 60
operationT imeoutMilliseconds int Milliseconds of operation timeout 500
digest String Login password

Etcd Repository

Type: Etcd
Mode: Cluster
Attributes:

Name Type Description Default Value
timeToLiveSeconds long Seconds of ephemeral data live 30
connectionTimeout long Seconds of connection timeout 30

209



Beijing SphereEx Technology Co., Ltd.

SSD Repository

Type: SphereEx:MATE
Mode: Cluster
Attributes:
none

Procedure

1. Configure running mode in server.yaml.
2. Configure metadata persistence warehouse type.

Sample

■ Cluster mode.
mode:
type: Cluster
repository:
type: SphereEx:MATE
props:
namespace: governance
server‑lists: localhost:21506

Sharding Algorithm

Auto Sharding Algorithm

Modulo Sharding Algorithm

Type: MOD
Attributes:

Name DataType Description
sharding‑count int Sharding count

Hash Modulo Sharding Algorithm

Type: HASH_MOD
Attributes:

Name DataType Description
sharding‑count int Sharding count

210



Beijing SphereEx Technology Co., Ltd.

Volume Based Range Sharding Algorithm

Type: VOLUME_RANGE
Attributes:

Name DataType Description
range‑lower long Range lower bound, throw exception if lower than bound
range‑upper long Range upper bound, throw exception if upper than bound
sharding‑volume long Sharding volume

Boundary Based Range Sharding Algorithm

Type: BOUNDARY_RANGE
Attributes:

Name Dat aType Description
shardi ng‑ranges S tring Range of sharding border, multiple boundaries separated by commas

Auto Interval Sharding Algorithm

Type: AUTO_INTERVAL
Attributes:

N ame D a t a
T y p e

Description

da tet ime ‑
lo wer

S t r i n
g

Shard datetime begin boundary, pattern: yyyy‑MM‑dd HH:mm:ss

da tet ime ‑
up per

S t r i n
g

Shard datetime end boundary, pattern: yyyy‑MM‑dd HH:mm:ss

s har din g‑
s eco nds

l o n g Max seconds for the data in one shard, allows sharding key timestamp format secondswith
time precision, but time precision after seconds is automatically erased

Consistent Hash Sharding Algorithm

Type: SphereEx:CONSISTENT_HASH
Attributes:

211



Beijing SphereEx Technology Co., Ltd.

Name D
ataType

Description

sharding‑
count

int Required item, used to specify the number of sharding.

sha
rding‑
node‑
weight

String It is not a required item. The weight of sharding data nodes is separated by commas, for ex‑
ample: “2,2,1,1”. The larger the weight, the more virtual nodes used for consistency hash
calculation, and the default weight is 1.

v irtual‑
node‑
count

int Required item. Thenumberof virtual nodes corresponding to the shardingdatanode. Themore
virtual nodes, the more balanced the sharding. But too many virtual nodes will also affect the
performance.

con
sistent‑
hash‑
seed

int It is not required. The seed parameter of consistency hash is calculated. The default value is 0.

Standard Sharding Algorithm

Apache ShardingSphere built‑in standard sharding algorithm are:

Inline Sharding Algorithm

With Groovy expressions, InlineShardingStrategy provides single‑key support for the sharding operation of = and IN
in SQL. Simple sharding algorithms can be used through a simple configuration to avoid laborious Java code devel‑
opments. For example, t_user_$‑>{u_id % 8} means table t_user is divided into 8 tables according to u_id, with table
names from t_user_0 to t_user_7. Please refer to Inline Expression for more details.
Type: INLINE
Attributes:

Name D a t a T y p e Description D efa ult Va lue
algori thm‑expression S t r i n g Inline expression sharding

-algorithm
allow‑rang e‑query‑with‑i
nline‑sharding (?)

b o o l e a n Whether range query is al‑
lowed. Note: range query
will ignore sharding strat‑
egy and conduct full rout‑
ing

fa lse

Interval Sharding Algorithm

Type: INTERVAL
Attributes:

212



Beijing SphereEx Technology Co., Ltd.

Name D a t a T y p e Description D e f a u l t V a l u e
date time‑p attern S t r i n g Timestamp pattern of

sharding value, must -

can be transformed to
Java LocalDateTime. For
example: yyyy‑MM‑dd
HH:mm:ss

da tetime ‑lower S t r i n g Datetime sharding lower
boundary, pattern is de‑ -

fined datetime‑pattern
da tetime ‑upper (?) S t r i n g Datetime sharding upper

boundary, pattern is de‑
fined datetime‑pattern

N o w

shard ing‑su ffix‑p attern S t r i n g Suffix pattern of sharding
data sources or tables, -

must can be transformed
to Java LocalDateTime,
must be consistent with
datetime‑interval‑unit.
For example: yyyyMM

dateti me‑int erval‑
amount (?)

i n t Interval of sharding value 1

date time‑i nterva l‑unit (?) S t r i n g Unit of sharding value
interval, must can be
transformed to Java Chro‑
noUnit’s Enum value. For
example: MONTHS

D A Y S

Complex Sharding Algorithm

Complex Inline Sharding Algorithm

Please refer to Inline Expression for more details.
Type: COMPLEX_INLINE

Name D a t a T y p e Description D efa ult Va lue
sh arding‑columns (?) S t r i n g sharing column names

-

algori thm‑expression S t r i n g Inline expression sharding
-algorithm

allow‑rang e‑query‑with‑i
nline‑sharding (?)

b o o l e a n Whether range query is al‑
lowed. Note: range query
will ignore sharding strat‑
egy and conduct full rout‑
ing

fa lse

213



Beijing SphereEx Technology Co., Ltd.

Hint Sharding Algorithm

Hint Inline Sharding Algorithm

Please refer to Inline Expression for more details.
Type: COMPLEX_INLINE

Name DataType Description Default Value
alg orithm‑expression String Inline expression sharding algorithm ${value}

Class Based Sharding Algorithm

Realize custom extension by configuring the sharding strategy type and algorithm class name.
Type：CLASS_BASED
Attributes：

Name Dat
aType

Description

strategy S tring Sharding strategy type, support STANDARD, COMPLEX or HINT (case insensi‑
tive)

algor ithmClass‑
Name

S tring Fully qualified name of sharding algorithm

Key Generate Algorithm

Snowflake

Type: SNOWFLAKE
Attributes:

Name D a
t a
T y
p e

Description Def
ault
V
alue

max
‑tolerate‑
time‑diff
erence‑
milliseconds
(?)

l o
n g

Themax tolerate time for different server’s time difference in milliseconds 10
mill
isec
onds

m ax‑
vibration‑
offset (?)

i n t Themax upper limit value of vibrate number, range [0, 4096). Notice: To use the generated
value of this algorithm as sharding value, it is recommended to configure this property.
The algorithm generates key mod 2^n (2^n is usually the sharding amount of tables or
databases) in different milliseconds and the result is always 0 or 1. To prevent the above
sharding problem, it is recommended to configure this property, its value is (2^n)‑1

1

214



Beijing SphereEx Technology Co., Ltd.

UUID

Type: UUID
Attributes: None

Load Balance Algorithm

Round Robin Algorithm

Type: ROUND_ROBIN
Attributes: None

Random Algorithm

Type: RANDOM
Attributes: None

Delay Algorithm

Type: SPHERE_EX_DELAY_REPLICA
Attributes: None

Weight Algorithm

Type: WEIGHT
Attributes:

All read data in use must be configured with weights

Name Dat aType Description
d ouble The attribute name uses the

- <read-data_source-name> (+
) read database name, and

the parameter fills in the
weight:Double.MAX_VALUE.

Encryption Algorithm

MD5 Encrypt Algorithm

Type: MD5
Attributes: None

215



Beijing SphereEx Technology Co., Ltd.

AES Encrypt Algorithm

Type: AES
Attributes:

Name DataType Description
aes‑key‑value String AES KEY

RC4 Encrypt Algorithm

Type: RC4
Attributes:

Name DataType Description
rc4‑key‑value String RC4 KEY

SM3 Encrypt Algorithm

Type: SM3
Attributes:

Name DataType Description
sm3‑salt String SM3 SALT (should be blank or 8 bytes long)

SM4 Encrypt Algorithm

Type: SM4
Attributes:

Name DataType Description
sm4‑key String SM4 KEY (should be 16 bytes)
sm4‑mode String SM4 MODE (should be CBC or ECB)
sm4‑iv String SM4 IV (should be specified on CBC, 16 bytes long)
sm4‑padding String SM4 PADDING (should be PKCS5Padding or PKCS7Padding, NoPadding excepted)

Shadow Algorithm

Column Shadow Algorithm

Column Value Match Shadow Algorithm

Type：VALUE_MATCH
Attributes:

Name DataType Description
column String Shadow column
operation String SQL operation type（INSERT, UPDATE, DELETE, SELECT）
value String Shadow columnmatching value

216



Beijing SphereEx Technology Co., Ltd.

Column Regex Match Shadow Algorithm

Type: REGEX_MATCH
Attributes:

Name DataType Description
column String Shadow column
operation String SQL operation type (insert, update, delete, select)
regex String Shadow columnmatching regular expression

Hint Shadow Algorithm

Simple Hint Shadow Algorithm

Type: SIMPLE_HINT
Attributes:

Configure at least a set of arbitrary key‑value pairs. For example: foo:bar

Name DataType Description
foo String bar

Sharding Audit Algorithm

Background

The sharding audit is to audit the SQL statements in the sharding database. Sharding audit not only intercept illegal
SQL statements, but also gather the SQL statistics.

Parameters

DML_SHARDING_CONDITIONS algorithm

Type: DML_SHARDING_CONDITIONS

Procedure

1. when configuring data sharding rules, create sharding audit configurations.

Sample

■ DML_SHARDING_CONDITIONS
auditors:
sharding_key_required_auditor:
type: DML_SHARDING_CONDITIONS

217



Beijing SphereEx Technology Co., Ltd.

7.1.9 Special API

This chapter will introduce the special API of DB Plus Engine‑Driver.

Sharding

This chapter will introduce the Sharding API of DBPlusEngine‑Driver.

Mandatory Routing

Introduction

DBPlusEngine uses ThreadLocal to manage sharding values for mandatory routing. A sharding value can be added to
HintManager through programming, and the value is only valid in the current thread. Additionally, DBPlusEngine can
also performmandatory routing by adding annotations to SQL.
Hint can be used in the following scenarios:

■ Fields used for sharding exist in external business logic rather than in SQL, database, and table structures.
■ Some data operations are forcibly carried out in the primary database.

Procedure

1. Call HintManager.getInstance() to obtain HintManager instance.
2. CallHintManager.addDatabaseShardingValue，HintManager.addTableShardingValuemethod to set the sharding

key value.
3. Execute SQL statements to complete routing and execution.
4. Call HintManager.close to clear the content of ThreadLocal.

Sample

Sharding with Hint

Rules Configuration

Hint sharding algorithm requires users to implement org.apache.shardingsphere.sharding.api.sharding.hint.
HintShardingAlgorithm interface. DBPlusEngine will obtain sharding values from HintManager for routing.
Configuration sample:
rules:
‑ !SHARDING
tables:
t_order:
actualDataNodes: demo_ds_${0..1}.t_order_${0..1}
databaseStrategy:
hint:
algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm

tableStrategy:
hint:
algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm

defaultTableStrategy:
none:
defaultKeyGenerateStrategy:

218



Beijing SphereEx Technology Co., Ltd.

type: SNOWFLAKE
column: order_id

props:
sql‑show: true

Obtain HintManager

HintManager hintManager = HintManager.getInstance();

Add Sharding Key Value

■ Use hintManager.addDatabaseShardingValue to add data source sharding key value.
■ Use hintManager.addTableShardingValue to add table sharding key value.

When database sharding is required and table sharding is not, while mandatory routing is carried out to a
sub‑database, you can use hintManager.setDatabaseShardingValue to set sharding values.

Clear Sharding Key Value

The sharding key value is stored in ThreadLocal, so you need to call hintManager.close() at the end of the operation to
clear the content of ThreadLocal.
__hintManager has implemented the AutoCloseable interface, and you are advised to use try with resource to close it
automatically.

Complete Code Example

// Sharding database and table using HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {
// ...

}
}

}

// Sharding database without sharding table and routing to only one database using HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {
// ...

}
}

}

219



Beijing SphereEx Technology Co., Ltd.

Use SQL Annotations

Terms of Use

Before using the SQLHint, users should enable configurations of parsing annotations in advance and set sqlComment‑
ParseEnabled to true.
The annotation format only supports /* */ and content has to start with ShardingSphere hint:. Optional properties
include:

■ {table}.SHARDING_DATABASE_VALUE: used to add data source sharding key value corresponding to {table}. Mul‑
tiple properties are separated by a comma.

■ {table}.SHARDING_TABLE_VALUE: used to add table sharding key value corresponding to {table}. Multiple prop‑
erties are separated by a comma.
When database sharding is required and table sharding is not, while mandatory routing is carried out to a
sub‑database, you can use SHARDING_DATABASE_VALUE to add shards without specifying {table}.

Complete Sample

/* SHARDINGSPHERE_HINT: t_order.SHARDING_DATABASE_VALUE=1, t_order.SHARDING_TABLE_VALUE=1 */
SELECT * FROM t_order;

Transaction

Using distributed transaction through DBPlusEngine is no different from local transaction. In addition to transpar‑
ent use of distributed transaction, DBPlusEngine can switch distributed transaction types every time the database
accesses.
Supported transaction types include local, XA and BASE. It can be set before creating a database connection, and
default value can be set when DBPlusEngine startup.

Use Java API

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!‑‑ import if using XA transaction ‑‑>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑xa‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!‑‑ import if using BASE transaction ‑‑>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑base‑seata‑at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

220



Beijing SphereEx Technology Co., Ltd.

Use Distributed Transaction

TransactionTypeHolder.set(TransactionType.XA); // Support TransactionType.LOCAL, TransactionType.XA, TransactionType.BASE
try (Connection conn = dataSource.getConnection()) { // Use ShardingSphereDataSource
conn.setAutoCommit(false);
PreparedStatement ps = conn.prepareStatement("INSERT INTO t_order (user_id, status) VALUES (?, ?)");
ps.setObject(1, 1000);
ps.setObject(2, "init");
ps.executeUpdate();
conn.commit();

}

Use Spring Boot Starter

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core‑spring‑boot‑starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!‑‑ import if using XA transaction ‑‑>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑xa‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!‑‑ import if using BASE transaction ‑‑>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑base‑seata‑at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Transaction Manager

@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {

@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);

}

@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {
return new JdbcTemplate(dataSource);

}
}

221



Beijing SphereEx Technology Co., Ltd.

Use Distributed Transaction

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // Support TransactionType.LOCAL, TransactionType.XA,
TransactionType.BASE
public void insert() {
jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)", (PreparedStatementCallback<Object>) ps ‑> {
ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();

});
}

Use Spring Namespace

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core‑spring‑namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!‑‑ import if using XA transaction ‑‑>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑xa‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!‑‑ import if using BASE transaction ‑‑>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑base‑seata‑at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Transaction Manager

<!‑‑ ShardingDataSource configuration ‑‑>
<!‑‑ ... ‑‑>

<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="shardingDataSource" />

</bean>
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
<property name="dataSource" ref="shardingDataSource" />

</bean>
<tx:annotation‑driven />

<!‑‑ Enable auto scan@ShardingSphereTransactionType annotation to inject the transaction type before connection created ‑‑>
<sharding:tx‑type‑annotation‑driven />

222



Beijing SphereEx Technology Co., Ltd.

Use Distributed Transaction

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // Support TransactionType.LOCAL, TransactionType.XA,
TransactionType.BASE
public void insert() {
jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)", (PreparedStatementCallback<Object>) ps ‑> {
ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();

});
}

Atomikos Transaction

The default XA transaction manager of DBPlusEngine is Atomikos.

Data Recovery

xa_tx.log generated in the project logs folder is necessary for the recovery when XA crashes. Please keep it.

Update Configuration

Developer can add jta.properties in classpath of the application to customize Atomikos configuration. For detailed
configuration rules.
Please refer to Atomikos official documentation for more details.

Narayana Transaction

Import Maven Dependency

<properties>
<narayana.version>5.9.1.Final</narayana.version>
<jboss‑transaction‑spi.version>7.6.0.Final</jboss‑transaction‑spi.version>
<jboss‑logging.version>3.2.1.Final</jboss‑logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!‑‑ Import if using XA transaction ‑‑>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑xa‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑xa‑narayana</artifactId>
<version>${shardingsphere.version}</version>

223

https://www.atomikos.com/Documentation/JtaProperties


Beijing SphereEx Technology Co., Ltd.

</dependency>
<dependency>
<groupId>org.jboss.narayana.jta</groupId>
<artifactId>jta</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>
<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana‑jts‑integration</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>
<groupId>org.jboss</groupId>
<artifactId>jboss‑transaction‑spi</artifactId>
<version>${jboss‑transaction‑spi.version}</version>

</dependency>
<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss‑logging</artifactId>
<version>${jboss‑logging.version}</version>

</dependency>

Customize Configuration Items

Add jbossts‑properties.xml in classpath of the application to customize Narayana configuration.
Please refer to Narayana official documentation for more details.

Configure XA Transaction Manager Type

Yaml:
‑ !TRANSACTION
defaultType: XA
providerType: Narayana

SpringBoot:
spring:
shardingsphere:
props:
xa‑transaction‑manager‑type: Narayana

Spring Namespace:
<shardingsphere:data‑source id="xxx" data‑source‑names="xxx" rule‑refs="xxx">
<props>
<prop key="xa‑transaction‑manager‑type">Narayana</prop>

</props>
</shardingsphere:data‑source>

224

https://narayana.io/documentation/index.html


Beijing SphereEx Technology Co., Ltd.

Bitronix Transaction

Import Maven Dependency

<properties>
<btm.version>2.1.3</btm.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑jdbc‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑xa‑core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑transaction‑xa‑bitronix</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.codehaus.btm</groupId>
<artifactId>btm</artifactId>
<version>${btm.version}</version>

</dependency>

Customize Configuration Items

Please refer to Bitronix official documentation for more details.

Configure XA Transaction Manager Type

Yaml:
‑ !TRANSACTION
defaultType: XA
providerType: Bitronix

SpringBoot:
spring:
shardingsphere:
props:
xa‑transaction‑manager‑type: Bitronix

Spring Namespace:
<shardingsphere:data‑source id="xxx" data‑source‑names="xxx" rule‑refs="xxx">
<props>
<prop key="xa‑transaction‑manager‑type">Bitronix</prop>

</props>
</shardingsphere:data‑source>

225

https://github.com/bitronix/btm/wiki


Beijing SphereEx Technology Co., Ltd.

Seata Transaction

Startup Seata Server

Download seata server according to seata‑work‑shop.

Create Undo Log Table

Create undo_log table in each physical database (sample for MySQL).
CREATE TABLE IF NOT EXISTS `undo_log`
(
`id` BIGINT(20) NOT NULL AUTO_INCREMENT COMMENT 'increment id',
`branch_id` BIGINT(20) NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(100)NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128)NOT NULL COMMENT 'undo_log context,such as serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME NOT NULL COMMENT 'modify datetime',
PRIMARY KEY (`id`),
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)
) ENGINE = InnoDB
AUTO_INCREMENT = 1
DEFAULT CHARSET = utf8 COMMENT ='AT transaction mode undo table';

Update Configuration

Configure seata.conf file in classpath.
client {
application.id = example ## application unique ID
transaction.service.group =my_test_tx_group ## transaction group

}

Modify file.conf and registry.conf if needed.

7.1.10 Unsupported Items

DataSource Interface

■ Do not support timeout related operations

Connection Interface

■ Do not support operations of stored procedure, function and cursor
■ Do not support native SQL
■ Do not support savepoint related operations
■ Do not support Schema/Catalog operation
■ Do not support self‑defined type mapping

226

https://github.com/seata/seata-workshop


Beijing SphereEx Technology Co., Ltd.

Statement and PreparedStatement Interface

■ Do not support statements that return multiple result sets (stored procedures, multiple pieces of non‑SELECT
data)

■ Do not support the operation of international characters

ResultSet Interface

■ Do not support getting result set pointer position
■ Do not support changing result pointer position through none‑next method
■ Do not support revising the content of result set
■ Do not support acquiring international characters
■ Do not support getting Array

JDBC 4.1

■ Do not support new functions of JDBC 4.1 interface
For all the unsupported methods, please read org.apache.shardingsphere.driver.jdbc.unsupported package.

7.2 DBPlusEngine‑Proxy

Configuration is the only module in DBPlusEngine‑Proxy that interacts with application developers, through which
developer can quickly and clearly understand the functions provided by DBPlusEngine‑Proxy.
This chapter is a configuration manual for DBPlusEngine‑Proxy, which can also be referred to as a dictionary if neces‑
sary.
DBPlusEngine‑Proxy provided YAML configuration, and used DistSQL to communicate. By configuration, application
developers can flexibly use data sharding, readwrite‑splitting, data encryption, shadow database or the combination
of them.
Rule configuration keeps consist with YAML configuration of DBPlusEngine‑Driver. DistSQL and YAML can be replaced
each other.
Please refer to Example for more details.

7.2.1 Use of License in DBPlusEngine‑Proxy

Background

License F unc‑
tion

Description

limit d uration Limit the duration of DBPlusEngine.
limit re sources Limit the number of storage nodes created by the DBPlusEngine.
limit in stances Limit the number of instances created by [DBPlusEngine‑Proxy]+[DBPlusEngine‑Driver] in a sin‑

gle cluster.
limit v ersions Limit the version of the DBPlusEngine instance in a stand‑alone or cluster.

227

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example


Beijing SphereEx Technology Co., Ltd.

Notice

The default storage directory for the License is: config.

Procedure

■ Execute the following command to view the license.
SHOW LICENSE INFO;

■ Use the registration code to register the license.
REGISTER LICENSE '[license‑key]';

■ Use the license file to register the license.
REGISTER LICENSE '[Direct path/license‑file]';

■ Use the registration code file to preview the license.
SHOW LICENSE INFO '[license‑key]';

■ Use the license file to preview the license.
SHOW LICENSE INFO '[Direct path/license‑file]';

Post‑processing

If the following error occurs, please obtain the latest license and update the license.
■ No license prompt

FATAL: License not registered

■ Incomplete license prompt
FATAL: Incomplete license

■ License expiration prompt
FATAL: License is expired

■ Illegal license prompt
ERROR: The xxx exceeds the limit of the license

7.2.2 Startup

This chapter will introduce the deployment and startup of DBPlusEngine‑Proxy.

228



Beijing SphereEx Technology Co., Ltd.

Use Binary Tar

Startup Steps

1. Download the latest version of ShardingSphere‑Proxy.
2. After the decompression, revise conf/server.yaml and documents beginwith config‑ prefix, conf/config‑xxx.yaml

for example, to configure sharding rules and readwrite‑splitting rules. Please refer to Configuration Manual for
the configuration method.

3. Please run bin/start.sh for Linux operating system; run bin/start.bat for Windows operating system to start
ShardingSphere‑Proxy. To configure start port and document location, please refer to Quick Start.

Using database protocol

Using PostgreSQL

1. Use any PostgreSQL terminal to connect, such as psql ‑U root ‑h 127.0.0.1 ‑p 3307.

Using MySQL

1. Copy MySQL’s JDBC driver to folder ext‑lib/.
2. Use any MySQL terminal to connect, such as mysql ‑u root ‑h 127.0.0.1 ‑P 3307.

Using openGauss

1. Copy openGauss’s JDBC driver whose package prefixed with org.opengauss to folder ext‑lib/.
2. Use any openGauss terminal to connect, such as gsql ‑U root ‑h 127.0.0.1 ‑p 3307.

Usingmetadata persist repository

Using ZooKeeper

Integrated ZooKeeper Curator client by default.

Using Etcd

1. Copy Etcd’s client driver to folder ext‑lib/.

Using Distributed Transaction

Same with ShardingSphere‑JDBC. please refer to Distributed Transaction for more details.

229



Beijing SphereEx Technology Co., Ltd.

Using user‑defined algorithm

When developer need to use user‑defined algorithm, should use the way below to configure algorithm, use sharding
algorithm as example.

1. Implement ShardingAlgorithm interface.
2. Create META‑INF/services directory in the resources directory.
3. Create a new file org.apache.shardingsphere.sharding.spi.ShardingAlgorithm in the META‑INF/services direc‑

tory.
4. Absolute path of the implementation class are write to the file org.apache.shardingsphere.sharding.spi.

ShardingAlgorithm
5. Package Java file to jar.
6. Copy jar to ShardingSphere‑Proxy’s ext‑lib/ folder.
7. Configure user‑defined Java class into YAML file. Please refer to Configuration Manual for more details.

Notices

1. DBPlusEngine‑Proxy uses 3307 port in default. Users can start the script parameter as the start port number, like
bin/start.sh 3308.

2. DBPlusEngine‑Proxy uses conf/server.yaml to configure the registry center, authentication information and pub‑
lic properties.

3. DBPlusEngine‑Proxy supports multi‑logic data sources, with each yaml configuration document named by con‑
fig‑ prefix as a logic data source.

4. DBPlusEngine‑Proxy uses 0.0.0.0 as default listening address. Users can specify the listening address through the
startup script, like bin/start.sh ‑‑help.

Use Docker

Background

This chapter introduces how to start DBPlusEngine‑Proxy via Docker.

Notice

Using Docker to start DBPlusEngine‑Proxy does not require additional package supoort.

Steps

1. Acquire Docker Image
■ Method 1 (Recommended): pull from DockerHub

docker pull apache/shardingsphere‑proxy

■ Method 2: acquire latest master branch imagemaster: https://github.com/apache/shardingsphere/pkgs/contai
ner/shardingsphere‑proxy

■ Method 3: build your own image

230

https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy


Beijing SphereEx Technology Co., Ltd.

git clone https://github.com/apache/shardingsphere
mvn clean install
cd shardingsphere‑distribution/shardingsphere‑proxy‑distribution
mvn clean package ‑Prelease,docker

If the following problems emerge, please make sure Docker daemon process is running.
I/O exception (java.io.IOException) caught when processing request to {}‑>unix://localhost:80: Connection refused？

2. Configure conf/server.yaml and conf/config‑*.yaml
Configuration file template can be attained from the Docker container and can be copied to any directory on the host:
docker run ‑d ‑‑name tmp ‑‑entrypoint=bash apache/shardingsphere‑proxy
docker cp tmp:/opt/shardingsphere‑proxy/conf /host/path/to/conf
docker rm tmp

Since the network conditions inside the containermay differ from those of the host, if errors such as“cannot connect
to the database”occur, pleasemake sure that the IP of the database specified in the conf/config‑*.yaml configuration
file can be accessed from inside the Docker container.
For details, please refer to DBPlusEngine‑Proxy quick start manual ‑ Use Binary Tar.

4. Start the DBPlusEngine‑Proxy container
Mount the conf and ext‑lib directories from the host to the container. Start the container:
docker run ‑d \
‑v /host/path/to/conf:/opt/shardingsphere‑proxy/conf \
‑v /host/path/to/ext‑lib:/opt/shardingsphere‑proxy/ext‑lib \
‑e PORT=3308 ‑p13308:3308 apache/shardingsphere‑proxy:latest

ext‑lib is not necessary during the process. Users can mount it at will. DBPlusEngine‑Proxy default port 3307 can be
designated according to environment variable ‑e PORT Customized JVM related parameters can be set according to
environment variable JVM_OPTS.
Note:
Support setting environment variable CGROUP_MEM_OPTS: used to set relatedmemory parameters in the container
environment. The default values in the script are:
‑XX:InitialRAMPercentage=80.0 ‑XX:MaxRAMPercentage=80.0 ‑XX:MinRAMPercentage=80.0

5. Use Client to connect to DBPlusEngine‑Proxy
Please refer to DBPlusEngine‑Proxy quick start manual ‑ Use Binary Tar.

Configuration Example

For full configuration, please refer to the examples given in DBPlusEngine library: https://github.com/apache/shardi
ngsphere/tree/master/examples/shardingsphere‑proxy‑example.

231

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example


Beijing SphereEx Technology Co., Ltd.

Using Operator

What is DBPlusEngine‑Operator?

Kubernetes’operator mode allows you to expand the ability of the cluster by associating controllers for one or more
custom resources without modifying kubernetes’own code. Operator is the kubernetes API client and acts as the
custom resources controller.
The operator mode aims to capture the key objectives of the DevOps teams (who are managing one or a group of
services).
DBPlusEngine‑Operator helps users quickly deploy a set of DBPlusEngine‑Proxy cluster in kubernetes environment,
and is responsible for deploying and maintaining relevant resources around the cluster and monitoring the cluster
status.

Terms

CRD

CRD (customresourcedefinition) user‑defined resource definition means that DBPlusEngine‑Operator will deploy a
complete set of DBPlusEngine‑Proxy clusters in kubernetes cluster by using CR (customresource) defined by CRD.

Advantages

Simplified configuration

You only need to write a simple yaml to deploy a complete set of DBPlusEngine‑Proxy clusters in the cluster.

Easy to expand

Bymodifying CR yaml, a series of features such as horizontal scaling can be used.

Simple operation andmaintenance

Using DBPlusEngine‑Operator will not interfere with the status of DBPlusEngine‑Proxy in the cluster. DBPlusEngine‑
Operator will automatically detect the status of the cluster and correct it.

232



Beijing SphereEx Technology Co., Ltd.

Architecture

Fig. 1: Architecture

Install DBPlusEngine‑Operator

Configure DBPlusEngine‑Operator Parameters (#DBPlusEngine‑Operator Parameters), configuration file located in
dbplusengine‑operator/values.yaml.
Run
kubectl create ns dbplusengine‑operator
helm install dbplusengine‑operator dbplusengine‑operator ‑n dbplusengine‑operator

233



Beijing SphereEx Technology Co., Ltd.

Install DBPlusEngine‑Operator‑Cluster cluster

Configure the DBPlusEngine‑Operator‑Cluster Parameters configuration file located in dbplusengine‑
proxy/values.yaml.
Move the sphere‑ex.license to dbplusengine‑proxy/license, and keep the name sphere‑ex.license.
kubectl create ns dbplusengine
helm install dbplusengine‑operator‑cluster dbplusengine‑operator‑cluster ‑n dbplusengine

DBPlusEngine‑Operator Parameters

DBPlusEngine‑Operator parameters

Name Description Value
replicaCount operator replica count 2
image.repository operator image name sphereex/dbp lusengine‑operator
image.pullPolicy mirror pull policy IfNotPresent
image.tag image tag 0.0.1
imagePullSecrets image pulls key of private repository []
resources resources required by the operator {}
webhook.port operator webhook boot port 9443
heal th.healthProbePort operator health check port 8081

DBPlusEngine‑Operator‑Cluster Parameters

234



Beijing SphereEx Technology Co., Ltd.

DBPlusEngine‑Operator‑Cluster parameters

Name Description Value
re plicaCount DBPlusEngine‑Operator‑Cluster cluster starts thenumber of replicas, Note: after

you enable automaticScaling, this parameter will no longer take effect
"1"

a utomaticScal
ing.enable

Whether the DBPlusEngine‑Operator‑Cluster cluster has auto‑scaling enabled false

automatic Scal‑
ing.scal eUpWin‑
dows

DBPlusEngine‑Operator‑Cluster automatically scales the stable window 30

` automaticSc
aling.scaleD
ownWindows`

DBPlusEngine‑Operator‑Cluster automatically shrinks the stabilized window 30

a utomaticScal
ing.target

DBPlusEngine‑Operator‑Cluster auto‑scaling threshold, the value is a percent‑
age. Note: at this stage, only cpu is supported as a metric for scaling

70

automa tic‑
Scaling.m axIn‑
stance

DBPlusEngine‑Operator‑Cluster maximum number of scaled‑out replicas 4

automa ticScal‑
ing.m inInstance

DBPlusEngine‑Operator‑Cluster has a minimum number of boot replicas, and
the shrinkage will not be less than this number of replicas

1

imag e.registry DBPlusEngine‑Operator‑Cluster image host ``
docker.io``

image. reposi‑
tory

DBPlusEngine‑Operator‑Cluster image repository name spheree
x/dbpluseng
ine‑proxy

` image.tag` DBPlusEngine‑Operator‑Cluster image tag 5.1.2
` resources` DBPlusEngine‑Operator‑Cluster starts the requirement resource, and after

opening automaticScaling, the resource of the request multiplied by the per‑
centage of target is used to trigger the scaling action

{}

se rvice.type DBPlusEngine‑Operator‑Cluster external exposure mode `` Clus‑
terIP``

se rvice.port DBPlusEngine‑Operator‑Cluster exposes the port to the outside world 3307
` startPort` DBPlusEngine‑Operator‑Cluster boot port 3307
imageP ullSe‑
crets

DBPlusEngine‑Operator‑Cluster private image repository key []

mySQLDriv er.
version

The DBPlusEngine‑Operator‑Cluster mysql driver version will not be down‑
loaded if it is empty

""

GN.mode DBPlusEngine‑Operator‑Cluster governance center mode, supporting side‑
car/zookeeper

``
zookeeper``

GN.Sidec arReg‑
istry

DBPlusEngine‑Operator‑Cluster sidecar mode image host <i mage
wareho use
host>

GN.Sidecar
Repository

DBPlusEngine‑Operator‑Cluster sidecar mode image warehouse name sphereex/
dbplusengin
e‑sidecar

GN. SidecarTag DBPlusEngine‑Operator‑Cluster sidecar mode image tag 0.2.0
GN.sidecar
ServerAddr

DBPlusEngine‑Operator‑Cluster sidecar address of mode image server Serve r Ad‑
dress

` withAgent` DBPlusEngine‑Operator‑Cluster whether start agent parameter false

235



Beijing SphereEx Technology Co., Ltd.

Compute Node DBPlusEngine‑Operator‑Cluster Server Authority Configuration Items

Name Description Value
` serverCon‑
fig.author
ity.privilege.type`

The authority provider type for storage node data authorization, the default
value is ALL_PERMITTED

ALL_PE
RMIT‑
TED

se rverConfig.
authority .users[0].
password

The password used to login to the compute node root

serverConfig.autho
rity.users[0].user

The username used to login to the compute node, the authorized host. Format:
@ hostname as % or an empty string indicates no restriction on the authorized
host

`
root@%`

Compute Node DBPlusEngine‑Operator‑Cluster Server Mode Configuration Items

Name Des cription Value
serverConfig.mode.type The running mode type. At this

stage, only cluster mode is s up‑
ported

Cluster

serverConfig.mode. repository.
props.namespace

Registry center n amespace governance_ds

serverConfig.mode.rep ository.
props.server‑lists

Registry center co nnection address {{ printf "%s‑zook eeper.%s:2181" .
Release.Name .Release.Namespace }}

serverConfig.mode.r epository.
props.maxRetries

Themaximum number of client con
nections retries

3

serverCon fig.mode.repository.
props.op erationTimeoutMillisec‑
onds

The number of mill iseconds that
the client o peration timed out

5000

server Config.mode.repository.
props .retryIntervalMilliseconds

The number of mill iseconds be‑
tween retries

500

serverConfig.mode.reposito ry.
props.timeToLiveSeconds

Thenumberof seconds that t empo‑
rary data inv alidated

60

serverC onfig.mode.repository.
type

Persist re pository type. Only Z
ooKeeper is s upported at this stage

ZooKeeper

Governance Node ZooKeeper Configuration Item

Configuration Item Description Value
zookeeper.enabled Used to switch whether use ZooKeeper chart ` true`
zoo keeper.replicaCount Number of ZooKeeper nodes 1
zookeeper. persistence.
enabled

Identifies whether ZooKeeper uses PersistentVolumeClaim to ap‑
ply for PersistentVolume

`` false``

zookeeper.persi stence.
storageClass

StorageClass for PersistentVolume ""

zookeeper.pers istence.
accessModes

Access mode of PersistentVolume ["Rea dWriteO
nce"]

zookeep er.persistence.size PersistentVolume size 8Gi

236



Beijing SphereEx Technology Co., Ltd.

Sample

dbplusengine‑operator/values.yaml

##@section DBPlusEngine‑Operator‑Cluster operator parameters
## @param replicaCount operator replica count
##
replicaCount: 2
image:
## @param image.repository operator image name
##
repository: "sphere‑ex/dbplusengine‑operator"
## @param image.pullPolicy image pull strategy
##
pullPolicy: IfNotPresent
# Overrides the image tag whose default is the chart appVersion.
## @param image.tag image tag
##
tag: "0.1.0"
## @param imagePullSecrets Private warehouse image pull key
## e.g:
## imagePullSecrets:
## ‑ name: mysecret
##
imagePullSecrets: []
## @param resources operator required resources
## e.g:
## resources:
## limits:
## cpu: 2
## limits:
## cpu: 2
##
resources: {}
## @paramwebhook.port operator webhook boot port
##
webhook:
port: 9443
##@param health.healthProbePort operator health check port
##
health:
healthProbePort: 8081

dbplusengine‑proxy/values.yaml

##@section DBPlusEngine‑Operator‑Cluster cluster parameters
## @param replicaCount DBPlusEngine‑Operator‑Cluster The number of cluster startup copies. Note: this parameter will no
longer take effect after automaticScaling is enabled.
##
replicaCount: "1"
## @param automaticScaling.enable DBPlusEngine‑Operator‑Cluster Whether the cluster starts automatic capacity expansion
and contraction
##@param automaticScaling.scaleUpWindows DBPlusEngine‑Operator‑Cluster Auto expansion stable window
##@param automaticScaling.scaleDownWindows DBPlusEngine‑Operator‑Cluster Auto shrink stable window
##@param automaticScaling.target DBPlusEngine‑Operator‑Cluster The threshold value of automatic capacity expansion and
contraction is percentage. Note: at this stage, only CPU is supported for capacity expansion and contraction.
## @param automaticScaling.maxInstance DBPlusEngine‑Operator‑Cluster Maximum number of capacity expansion copies
## @param automaticScaling.minInstance DBPlusEngine‑Operator‑Cluster The minimum number of startup copies, and the
shrink size will not be less than this number of copies.
##
automaticScaling:

237



Beijing SphereEx Technology Co., Ltd.

enable: false
scaleUpWindows: 30
scaleDownWindows: 30
target: 20
maxInstance: 4
minInstance: 1
## @param image.registry DBPlusEngine‑Operator‑Cluster image host
## @param image.repository DBPlusEngine‑Operator‑Cluster Image warehouse name
##@param image.tag DBPlusEngine‑Operator‑Cluster image tag
##
image:
registry: <image warehouse host>
repository: sphere‑ex/dbplusengine‑proxy
tag: 1.1.0
withAgent: false
## @param resources DBPlusEngine‑Operator‑Cluster Start the demand resource. After automaticscaling is enabled, multiply the
resource of request by the percentage of target as the actual utilization rate to trigger the expansion and contraction action.
## e.g:
## resources:
## limits:
## cpu: 2
## requests:
## cpu: 2
##
resources: {}
## @param service.type DBPlusEngine‑Operator‑Cluster external exposure mode
##@param service.port DBPlusEngine‑Operator‑Cluster external exposure port
##
service:
type: ClusterIP
port: 3307
##@param startPort DBPlusEngine‑Operator‑Cluster startup port
##
startPort: 3307
##@param imagePullSecrets DBPlusEngine‑Operator‑Cluster private image warehouse key
## e.g:
## imagePullSecrets:
## ‑ name: mysecret
##
imagePullSecrets: []
## @parammySQLDriver.version DBPlusEngine‑Operator‑Cluster mysql driver version. If it is empty, the driver will not be
downloaded.
##
mySQLDriver:
version: ""
## @section DBPlusEngine‑Operator‑Cluster ServerConfiguration parameters
## NOTE: If you use the sub‑charts to deploy Zookeeper, the server‑lists field must be "{{ printf \"%s‑zookeeper.%s:2181\" .
Release.Name .Release.Namespace }}",
## otherwise please fill in the correct zookeeper address
## The server.yaml is auto‑generated based on this parameter.
## If it is empty, the server.yaml is also empty.
## ref: https://shardingsphere.apache.org/document/current/en/user‑manual/shardingsphere‑jdbc/yaml‑config/mode/
## ref: https://shardingsphere.apache.org/document/current/en/user‑manual/common‑config/builtin‑algorithm/metadata‑
repository/
##
serverConfig:
## @section Compute‑Node DBPlusEngine‑Operator‑Cluster ServerConfiguration authority parameters
## NOTE: It is used to set up initial user to login compute node, and authority data of storage node.
## @param serverConfig.authority.privilege.type authority provider for storage node, the default value is ALL_PERMITTED
##@param serverConfig.authority.users[0].password Password for compute node.
## @param serverConfig.authority.users[0].user Username,authorized host for compute node. Format: <username>@
<hostname> hostname is % or empty string means do not care about authorized host
##
authority:

238



Beijing SphereEx Technology Co., Ltd.

privilege:
type: ALL_PERMITTED
users:
‑ password: root
user: root@%

##@section Compute‑Node DBPlusEngine‑Operator‑Cluster ServerConfiguration mode Configuration parameters
## @param serverConfig.mode.type Type of mode configuration. Now only support Cluster mode
##@param serverConfig.mode.repository.props.namespace Namespace of registry center
## @param serverConfig.mode.repository.props.server‑lists Server lists of registry center
## @param serverConfig.mode.repository.props.maxRetries Max retries of client connection
##@param serverConfig.mode.repository.props.operationTimeoutMilliseconds Milliseconds of operation timeout
## @param serverConfig.mode.repository.props.retryIntervalMilliseconds Milliseconds of retry interval
## @param serverConfig.mode.repository.props.timeToLiveSeconds Seconds of ephemeral data live
## @param serverConfig.mode.repository.type Type of persist repository. Now only support ZooKeeper
## @param serverConfig.mode.overwrite Whether overwrite persistent configuration with local configuration
##
##
## mode:
## repository:
## props:
## namespace: ssd1031test1
## server‑lists: "127.0.0.1:21506"
## type: SphereEx:MATE
## type: Cluster
mode:
overwrite: true
repository:
props:
maxRetries: 3
namespace: governance_ds
operationTimeoutMilliseconds: 5000
retryIntervalMilliseconds: 500
server‑lists: "{{ printf \"%s‑zookeeper.%s:2181\" .Release.Name .Release.Namespace }}"
timeToLiveSeconds: 600
type: ZooKeeper
type: Cluster
props:
proxy‑frontend‑database‑protocol‑type: PostgreSQL

##@section ZooKeeper chart parameters

## ZooKeeper chart configuration
## https://github.com/bitnami/charts/blob/master/bitnami/zookeeper/values.yaml
##
zookeeper:
## @param zookeeper.enabled Switch to enable or disable the ZooKeeper helm chart
##
enabled: true
## @param zookeeper.replicaCount Number of ZooKeeper nodes
##
replicaCount: 3
## ZooKeeper Persistence parameters
## ref: https://kubernetes.io/docs/user‑guide/persistent‑volumes/
## @param zookeeper.persistence.enabled Enable persistence on ZooKeeper using PVC(s)
## @param zookeeper.persistence.storageClass Persistent Volume storage class
## @param zookeeper.persistence.accessModes Persistent Volume access modes
##@param zookeeper.persistence.size Persistent Volume size
##
persistence:
enabled: false
storageClass: ""
accessModes:
‑ ReadWriteOnce
size: 8Gi

239



Beijing SphereEx Technology Co., Ltd.

Clean

helm uninstall dbplusengine‑proxy ‑n dbplusengine

helm uninstall dbplusengine‑operator ‑n dbplusengine‑operator

kubectl delete crd clusters.dbplusengine.sphere‑ex.com \
proxyconfigs.dbplusengine.sphere‑ex.com \
plocks.dbplusengine.sphere‑ex.com \
pmetadata.dbplusengine.sphere‑ex.com \
pnodes.dbplusengine.sphere‑ex.com \
ppipelines.dbplusengine.sphere‑ex.com \
psys.dbplusengine.sphere‑ex.com \
pworkids.dbplusengine.sphere‑ex.com

Related References

■ Feature Description of Auto‑Scaling on Cloud (HPA)
■ Feature Configuration of Auto‑Scaling on Cloud (HPA)

Add dependencies

This chapter mainly introduces how to download optional dependencies of DBPlusEngine.

Add Bitronix dependencies

Add Bitronix dependencies

Adding Bitronix dependencies requires downloading the following jar files and adding them under ext‑lib path.

jar file downloads

■ btm‑2.1.3.jar
■ shardingsphere‑transaction‑xa‑bitronix.jar

Please download the corresponding shardingsphere‑transaction‑xa‑bitronix.jar file according to the proxy version.

Add Narayana dependencies

Add Narayana dependencies

Adding Narayana dependencies requires downloading the following jar files and adding them under ext‑lib path.

240

https://repo1.maven.org/maven2/org/codehaus/btm/btm/2.1.3/btm-2.1.3.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-bitronix


Beijing SphereEx Technology Co., Ltd.

jar file downloads

■ arjuna‑5.12.4.Final.jar
■ common‑5.12.4.Final.jar
■ javax.activation‑api‑1.2.0.jar
■ jaxb‑api‑2.3.0.jar
■ jaxb‑core‑2.3.0.jar
■ jaxb‑impl‑2.3.0.jar
■ jboss‑connector‑api_1.7_spec‑1.0.0.Final.jar
■ jboss‑logging‑3.2.1.Final.jar
■ jboss‑transaction‑api_1.2_spec‑1.0.0.Alpha3.jar
■ jboss‑transaction‑spi‑7.6.0.Final.jar
■ jta‑5.12.4.Final.jar
■ narayana‑jts‑integration‑5.12.4.Final.jar
■ shardingsphere‑transaction‑xa‑narayana.jar

Please download the corresponding shardingsphere‑transaction‑xa‑narayana.jar file according to the proxy version.

7.2.3 Yaml Configuration

The YAML configuration of DBPlusEngine‑Driver is the subset of DBPlusEngine‑Proxy. In server.yaml file,
DBPlusEngine‑Proxy can configure the authority feature andmore properties for Proxy only.
Note: the YAML configuration file supports more than 3MB of configuration content.
This chapter will introduce the extra YAML configuration of DBPlusEngine‑Proxy.

Login Authentication

Password Authentication

DBPlusEngine‑Proxy uses password authentication by default. The configuration format is as follows:
authority:
users:
‑ user: root@%
password: root
‑ user: sharding
password: sharding

In this configuration, two users are specified for DBPlusEngine:
■ root: @% means that the user can access DBPlusEngine through any host, password specifies the password as

root.
■ sharding: the user does not specify the host configuration, and the default value is @%, password specifies the

password as sharding.
When the administrator needs to restrict specific users from logging in to the host, you can use the username@host to
specify, such as:
‑ user: user1@192.168.1.111
password: user1_password

241

https://repo1.maven.org/maven2/org/jboss/narayana/arjunacore/arjuna/5.12.4.Final/arjuna-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/common/5.12.4.Final/common-5.12.4.Final.jar
https://repo1.maven.org/maven2/javax/activation/javax.activation-api/1.2.0/javax.activation-api-1.2.0.jar
https://repo1.maven.org/maven2/javax/xml/bind/jaxb-api/2.3.0/jaxb-api-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-core/2.3.0/jaxb-core-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-impl/2.3.0/jaxb-impl-2.3.0.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/resource/jboss-connector-api_1.7_spec/1.0.0.Final/jboss-connector-api_1.7_spec-1.0.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/logging/jboss-logging/3.2.1.Final/jboss-logging-3.2.1.Final.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/transaction/jboss-transaction-api_1.2_spec/1.0.0.Alpha3/jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
https://repo1.maven.org/maven2/org/jboss/jboss-transaction-spi/7.6.0.Final/jboss-transaction-spi-7.6.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jta/jta/5.12.4.Final/jta-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jts/narayana-jts-integration/5.12.4.Final/narayana-jts-integration-5.12.4.Final.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-narayana


Beijing SphereEx Technology Co., Ltd.

Indicates that user1 can access DBPlusEngine only through 192.168.1.111, the authentication password is
user1_password.

LDAP Authentication

Notes: ‑ Before enabling LDAP authentication, users should first deploy an LDAP server, such as OpenLDAP. ‑ When
using the MySQL client, the cleartext‑plugin needs to be displayed, such as: mysql ‑h 127.0.0.1 ‑P 3307 ‑u root ‑p –
enable‑cleartext‑plugin
Configure LDAP in DBPlusEngine as follows:

Example 1

Each user needs to be authenticated with LDAP and use the same DN template.
authority:
users:
‑ user: root@%
‑ user: sharding
authenticators:
auth_ldap:
type: LDAP
props:
ldap_server_url: ldap://localhost:389
ldap_dn_template: cn={0},ou=users,dc=example,dc=org

defaultAuthenticator: auth_ldap

This configuration specifies an authenticator auth_ldap, whose type is LDAP, and the necessary configuration is given
in props:

■ ldap_server_url: access address of LDAP server
■ ldap_dn_template: user DN template

When using the above configuration, the corresponding user DN are root and sharding:
■ root：cn=root,ou=users,dc=example,dc=org
■ sharding：cn=sharding,ou=users,dc=example,dc=org

Example 2

Each user needs LDAP authentication, but uses a different DN template.
authority:
users:
‑ user: root@%
props:
ldap_dn: cn=root,ou=admin,dc=example,dc=org

‑ user: sharding
authenticators:
auth_ldap:
type: LDAP
props:
ldap_server_url: ldap://localhost:389
ldap_dn_template: cn={0},ou=users,dc=example,dc=org

defaultAuthenticator: auth_ldap

The difference from‘example 1’is: User‘root’is not in the sameou as other users, so an explicit user DN is specified
separately for‘root’.

242

https://openldap.org/


Beijing SphereEx Technology Co., Ltd.

When using the above configuration, the root and sharding of DN are: ‑ root: cn=root,ou=admin,dc=example,dc=org ‑
sharding: cn=sharding,ou=users,dc=example,dc=org

Hybrid Authentication

Hybrid authenticationmeans that some users use password authentication and others use LDAP authentication. This
is a very flexible combination that canmeet the needs of specific security scenarios.
The configuration format of hybrid authentication is as follows:
authority:
users:
‑ user: root@%
auth: auth_ldap
‑ user: sharding
password: sharding
‑ user: user1
password: password_user1

authenticators:
auth_ldap:
type: LDAP
props:
ldap_server_url: ldap://localhost:389
ldap_dn_template: cn={0},ou=users,dc=example,dc=org

In the above configuration, defaultAuthenticator is not specified, and password authentication is used by default. At
the same time, through display configuration auth: auth_ldap, which specifies the identity authenticator for the user
‘root’, and requires the user to log in through LDAP authentication.
When using the above configuration, the corresponding authentication methods for users‘root’,‘sharding’and
‘user1’are:

■ root: LDAP
■ sharding: password
■ user1: password

Note: in the hybrid authentication scenario, the administrator can also enable LDAP authentication by default and use
auth: password to set a small number of users to password authentication.

Authority

It is used to set up initial user to login compute node, and authority data of storage node.

Configuration Item Explanation

authority:
users:
‑ user: # Specify the username, and authorized host for logging in to the compute node. Format: <username>@<hostname>.

When the hostname is % or an empty string, it indicates that the authorized host is not limited.
password: # Password

privilege:
type: # Privilege provider type. The default value is ALL_PERMITTED.

243



Beijing SphereEx Technology Co., Ltd.

Example

ALL_PERMITTED

authority:
users:
‑ user: root@localhost
password: root
‑ user: my_user@
password: pwd

privilege:
type: ALL_PERMITTED

The above configuration indicates: ‑ The user root can connect to Proxy only through localhost, and the password
is root. ‑ The user my_user can connect to Proxy through any host, and the password is pwd. ‑ The privilege type is
ALL_PERMITTED, which indicates that users are granted all authorities by default without authentication.

DATABASE_PERMITTED

authority:
users:
‑ user: root@localhost
password: root
‑ user: my_user@
password: pwd

privilege:
type: DATABASE_PERMITTED
props:
user‑database‑mappings: root@=sharding_db, root@=test_db, my_user@127.0.0.1=sharding_db

Theabove configurationmeans: ‑ Theuser root can access sharding_dbwhen connecting fromanyhost ‑ Theuser root
can access test_db when connecting from any host ‑ The user my_user can access sharding_db only when connected
from 127.0.0.1
Refer to Authority Provider for more implementations.

Traffic Dual Routing

Instruction for Use

The traffic dual routing function needs to use the hybrid deployment architecture, deploy DBPlusEngine‑Driver and
DBPlusEngine‑Proxy at the same time, and uniformlymanage the functional such as sharding, encryption anddecryp‑
tion or read‑write splitting through the registry
Because the TrafficDual Routingmust be configuredwith DBPlusEngine‑Proxy, traffic rules can only be added through
YAML configuration or DistSQL at the access end of DBPlusEngine‑Proxy. In addition, in order to cooperate with the
traffic function, the DBPlusEngine‑Proxy access terminal needs to configure the labels tag for the configuration of traf‑
fic forwarding.

244



Beijing SphereEx Technology Co., Ltd.

Configuration Item Description

rules:
‑ !TRAFFIC
trafficStrategies:
sql_match_traffic:
labels:
‑ OLTP
algorithmName: sql_match_algorithm
loadBalancerName: random_load_balancer
sql_regex_traffic:
labels:
‑ OLTP
algorithmName: sql_regex_algorithm
loadBalancerName: random_load_balancer
sql_hint_traffic:
labels:
‑ OLAP
algorithmName: sql_hint_algorithm
loadBalancerName: round_robin_load_balancer
transaction_traffic:
# Optional configuration. The algorithms are JDBC and FIRST_SQL does not need to be configured.
labels:
‑ OLAP
‑ OLTP
algorithmName: transaction_algorithm
# Optional configuration. The algorithms are JDBC and FIRST_SQL does not need to be configured.
loadBalancerName: round_robin_load_balancer

trafficAlgorithms:
sql_match_algorithm:
type: SQL_MATCH
props:
sql: SELECT * FROM t_order WHERE content IN (?, ?); UPDATE t_order SET creation_date = NOW() WHERE user_id = 1;

sql_regex_algorithm:
type: SQL_REGEX
props:
regex: (?i)^(UPDATE|SELECT).*WHERE user_id.*

sql_hint_algorithm:
type: SQL_HINT
transaction_algorithm:
# Support FIRST_SQL, JDBC and proxy
# FIRST_ SQL will determine the forwarding result of the transaction unit according to the forwarding result of the first SQL
# JDBC will execute the transaction unit on JDBC without forwarding
# Proxy will forward the transaction unit to the proxy instance. In order to ensure the consistency of data, the transaction unit

will execute on the same instance.
type: PROXY

loadBalancers:
random_load_balancer:
type: RANDOM
round_robin_load_balancer:
type: ROUND_ROBIN

labels:
‑ OLTP

YamlTrafficRuleConfiguration configuration item description:

245



Beijing SphereEx Technology Co., Ltd.

Name Data Type Description
traf‑
fic‑
Strate‑
gies

Map<String, Yaml‑
TrafficS trategy‑
Configuration>

Forwarding policy, required. By default, they arematched in the order of configured
policies. The first matching policy is the target policy. If the user has configured
the transaction forwarding policy, the transaction forwarding policywill bematched
first.

traf‑
ficAl‑
go‑
rithms

Map<String, Yaml‑
ShardingSphereAl
gorithmConfigura‑
tion>

Forwarding matching algorithm, required.

load‑
Bal‑
ancers

Map<String, Yaml‑
ShardingSphereAl
gorithmConfigura‑
tion>

Forwarding load balancing policy, required.

YamlTrafficStrategyConfiguration configuration item description:

Name Data
Type

Description

name String Forwarding policy name, required.
labels Col‑

lec‑
tion

Forward the Proxy instance tag when algorithmName is configured as JDBC or FIRST_SQL,
no configuration is required, and other algorithms are required.

algorithm‑
Name

String Forwarding matching algorithm, required.

loadBal‑
ancer‑
Name

String Forwarding load balancing algorithm, when algorithmname is configured as JDBC or
FIRST_SQL, no configuration is required, and other algorithms are required.

Built‑in Forwarding Matching Algorithm

Hint Based Forwarding Matching Algorithm

Hint Forwarding Matching Algorithm Based on SQL

Type: SQL_HINT Configurable properties:
The SQL Hint function requires the user to turn on the configuration of parsing comments in advance, set sqlCom‑
mentParseEnabled to true, and the comment format only supports /* */ temporarily. The content needs to start with
ShardingSphere hint:. The user can turn on and off the SQL hint forwarding matching algorithm by setting the use‑
Traffic=true or useTraffic=false.

Forwarding Matching Algorithm Based on Segment (SegmentTrafficAlgorithm)

String Forwarding Matching Algorithm Based on SQL

String forwarding matching algorithm based on SQL
Type: SQL_MATCH
Configurable properties:

Attribute
Name

Data
Type

Description

sql String It is used to configure SQL strings. Multiple SQL strings are separated by semicolons. The SQL
string matching algorithm ignores case and blank characters.

246



Beijing SphereEx Technology Co., Ltd.

Regular Forwarding Matching Algorithm Based on SQL String

Type: SQL_REGEX
Configurable properties:

Name Data Type Description
regex String Used to configure regular expressions.

TransactionTrafficAlgorithm

Forwarding Matching Algorithm Based on the First SQL

Type: FIRST_SQL
Configurable attribute: None

Unified Forwarding JDBC Matching Algorithm

Type: JDBC
Configurable attribute: None

Unified Forwarding Proxy Matching Algorithm

Type: PROXY
Configurable attribute: None

Built‑in Forwarding Load Balancing Algorithm

TrafficLoadBalanceAlgorithm

Load balancing Algorithm for Random Proxy Instances

Type: RANDOM
Configurable attribute: None

Load Balancing Algorithm for Polling Proxy Instances

Type: ROUND_ROBIN
Configurable attribute: None

247



Beijing SphereEx Technology Co., Ltd.

Related Reference

Feature Description of Traffic Rule

Properties

Introduction

DBPlusEngine provides the way of property configuration to configure system level configuration.

248



Beijing SphereEx Technology Co., Ltd.

Configuration Item Explanation

N ame D a t a T y p e Description D e f a u l t V a l u e D y n a m i c U p d a t
e

sq l‑s how (?) b o o l e a n Whether show SQL
or not in log. Print
SQL details can
help developers
debug easier. The
log details include:
logic SQL, actual
SQL and SQL parse
result. Enable this
property will log
into log topic Shard‑
ingSphere‑SQL, log
level is INFO.

f a l s e t r u e

s ql‑ sim ple (?) b o o l e a n Whether show SQL
details in simple
style.

f a l s e t r u e

ke rne l‑e xec uto r‑s
ize (?)

i n t The max thread size
of worker group to
execute SQL. One
ShardingSphere‑
DataSource will
use a independent
thread pool, it does
not share thread
pool even different
data source in same
JVM.

i n f i n i t e f a l s e

max ‑co nne cti ons ‑
si ze‑ per ‑qu ery (?)

i n t Max opened con‑
nection size for each
query.

1 t r u e

c hec k‑t abl e‑m eta
dat a‑e nab led (?)

b o o l e a n Whether validate ta‑
ble meta data con‑
sistency when appli‑
cation startup or up‑
dated.

f a l s e f a l s e

pro xy‑ fro nte nd‑ flu
sh‑ thr esh old (?)

i n t Flush threshold
for every records
from databases for
ShardingSphere‑
Proxy.

1 2 8 t r u e

pro xy‑ hin t‑e nab
led (?)

b o o l e a n Whether enable hint
for ShardingSphere‑
Proxy. Using Hint
will switch proxy
thread mode from
IO multiplexing
to per connection
per thread, which
will reduce system
throughput.

f a l s e t r u e

pro xy‑ bac ken d‑q
uer y‑f etc h‑s ize (?)

i n t Proxy backend
query fetch size. A
larger value may in‑
crease the memory
usage of Sharding‑
Sphere Proxy. The
default value is ‑1,
which means set
the minimum value
for different JDBC
drivers.

1

f a l s e

p rox y‑f ron ten d‑e
xec uto r‑s ize (?)

i n t Proxy frontendNetty
executor size. The
default value is 0,
which means let
Netty decide.

0 f a l s e

p rox y‑b ack end ‑ex
ecu tor ‑su ita ble (?)

S t r i n g Available options
of proxy backend
executor suitable:
OLAP(default),
OLTP. The OLTP
option may reduce
time cost of writing
packets to client,
but it may increase
the latency of SQL
execution and
block other clients
if client connec‑
tions are more than
proxy‑frontend‑executor‑size,
especially executing
slow SQL.

O L A P f a l s e

pro xy‑ fro nte nd‑
max ‑co nne cti ons
(?)

i n t The maximum per‑
mitted number of
client connections
to Proxy. The default
value is 0 and less
than or equal to 0
means no limitation.

0 t r u e

s ql‑ fed era tio n‑t
ype (?)

S t r i n g SQL federation
executor type, in‑
cluding: NONE,
ORIGINAL, AD‑
VANCED.

N O N E F a l s e

pro xy‑ mys ql‑ def
aul t‑v ers ion (?)

S t r i n g Proxy specifies
the MySQL version
through configura‑
tion files, and the
default verison is
5.7.22.

2 2 F a l s e

pro xy‑ def aul t‑p ort
(?)

S t r i n g Proxy specifies the
default window
through configura‑
tion files.

3 3 0 7 F a l s e

p rox y‑n ett y‑b ack
log (?)

i n t Proxy specifies
the default netty
back_log parameter
through configura‑
tion files.

1 0 2 4 F a l s e

p rox y‑f ron ten d‑d
ata bas e‑p rot oco l‑
t ype

S t r i n g Proxy front‑end pro‑
tocol type, supports
MySQL, PostgreSQL,
openGauss

N O N E F a l s e

p rox y‑i nst anc e‑t
ype

S t r i n g Proxy instance
types, op‑
tions:Proxy,
SphereEx:Proxy,
Proxy indicates
the deployment
type on the cloud,
SphereEx:Proxy
indicates the local
deployment type.

P r o x y f a l s e

249



Beijing SphereEx Technology Co., Ltd.

Properties can be updated by DistSQL#RAL. Dynamic update can take effect immediately, static update can take effect
after restarted.

7.2.4 DistSQL

This chapter will introduce the detailed syntax of DistSQL.

Syntax

This chapter describes the syntax of DistSQL in detail, and introduces use of DistSQL with practical examples.

Syntax Rule

In DistSQL statement, except for keywords, the input format of other elements shall conform to the following rules.

Identifier

1. The identifier represents an object in the SQL statement, including:
■ database name
■ table name
■ column name
■ index name
■ resource name
■ rule name
■ algorithm name
2. The allowed characters in the identifier are: [A‑Z, A‑Z, 0‑9, _] (letters, numbers, underscores) and should start

with a letter.
3. When keywords or special characters appear in the identifier, use the backticks (`).

Literal

Types of literals include:
■ string: enclosed in single quotes (’) or double quotes (“)
■ int: it is generally a positive integer, such as 0‑9;

Note: some DistSQL syntax allows negative values. In this case, a negative sign (‑) can be added before the number,
such as ‑1.

■ boolean, containing only true & false. Case insensitive.

250



Beijing SphereEx Technology Co., Ltd.

RDL Syntax

RDL (Resource & Rule Definition Language) responsible for definition of resources/rules.

Storage Unit Definition

Syntax

REGISTER STORAGE UNIT storageUnitDefinition [, storageUnitDefinition] ...

ALTER STORAGE UNIT storageUnitDefinition [, storageUnitDefinition] ...

UNREGISTER STORAGE UNIT storageUnitName [, storageUnitName] ... [ignore single tables]

storageUnitDefinition:
simpleSource | urlSource

simpleSource:
storageUnitName(HOST=hostname,PORT=port,DB=dbName,USER=user [,PASSWORD=password] [,PROPERTIES(property [,

property]) ...])

urlSource:
storageUnitName(URL=url,USER=user [,PASSWORD=password] [,PROPERTIES(property [,property]) ...])

property:
key=value

Parameters Explained

Name DataType Description
storageUnitName IDENTIFIER Storage unit name
hostname STRING Host or IP
port INT Port
dbName STRING DB name
url STRING URL
user STRING username
password STRING password

Notes

■ Before adding storage unit, please confirm that a distributed database has been created, and execute the use
command to successfully select a database;

■ Confirm that the storage unit to be added or altered can be connected, otherwise the operation will not be suc‑
cessful;

■ Duplicate storageUnitName is not allowed;
■ PROPERTIES is used to customize connection pool parameters, key and value are both STRING types;
■ ALTER STORAGE UNIT is not allowed to change the real data source associated with this storage unit;
■ ALTER STORAGE UNIT will switch the connection pool. This operation may affect the ongoing business, please

use it with caution;
■ UNREGISTER STORAGE UNIT will only delete logical storage unit, not real data sources;
■ Storage unit referenced by rules cannot be deleted;

251



Beijing SphereEx Technology Co., Ltd.

■ If the storage unit is only referencedby single table rule, and the user confirms that the restriction canbe ignored,
the optional parameter ignore single tables can be added to perform forced deletion.

Example

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="db0",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="db1",
USER="root"

),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="db2",
USER="root",
PROPERTIES("maximumPoolSize"="10")

),ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/db3?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"="10","idleTimeout"="30000")

);

ALTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3309,
DB="db0",
USER="root",
PASSWORD="root"

),ds_1 (
URL="jdbc:mysql://127.0.0.1:3309/db1?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"="10","idleTimeout"="30000")

);

UNREGISTER STORAGE UNIT ds_0, ds_1;
UNREGISTER STORAGE UNIT ds_2, ds_3 ignore single tables;

252



Beijing SphereEx Technology Co., Ltd.

Rule Definition

This chapter describes the syntax of rule definition.

Sharding

Syntax

Sharding Table Rule

CREATE SHARDING TABLE RULE shardingTableRuleDefinition [, shardingTableRuleDefinition] ...

ALTER SHARDING TABLE RULE shardingTableRuleDefinition [, shardingTableRuleDefinition] ...

DROP SHARDING TABLE RULE tableName [, tableName] ...

CREATE DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

ALTER DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

DROP DEFAULT SHARDING shardingScope STRATEGY;

DROP SHARDING ALGORITHM algorithmName [, algorithmName] ...

DROP SHARDING KEY GENERATOR [IF EXISTS] keyGeneratorName [, keyGeneratorName] ...

CREATE SHARDING AUDITOR auditorDefinition [, auditorDefinition] ...

ALTER SHARDING AUDITOR auditorDefinition [, auditorDefinition] ...

DROP SHARDING AUDITOR [IF EXISTS] auditorName [, auditorName] ...

shardingTableRuleDefinition:
shardingAutoTableRule | shardingTableRule

shardingAutoTableRule:
tableName(storageUnits, shardingColumn, algorithmDefinition [, keyGenerateDefinition] [, auditDeclaration])

shardingTableRule:
tableName(dataNodes [, databaseStrategy] [, tableStrategy] [, keyGenerateDefinition] [, auditDeclaration])

storageUnits:
STORAGE_UNITS(storageUnit [, storageUnit] ...)

dataNodes:
DATANODES(dataNode [, dataNode] ...)

storageUnit:
storageUnitName | inlineExpression

dataNode:
dataNodeName | inlineExpression

shardingColumn:
SHARDING_COLUMN=columnName

algorithmDefinition:
TYPE(NAME=shardingAlgorithmType [, PROPERTIES([algorithmProperties])])

keyGenerateDefinition:
KEY_GENERATE_STRATEGY(COLUMN=columnName, strategyDefinition)

253



Beijing SphereEx Technology Co., Ltd.

auditDeclaration:
auditDefinition | auditStrategy

auditDefinition:
AUDIT_STRATEGY([(singleAuditDefinition),(singleAuditDefinition)], ALLOW_HINT_DISABLE=true)

singleAuditDefinition:
NAME=auditor1, algorithmDefinition

auditStrategy:
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2], ALLOW_HINT_DISABLE=true)

shardingScope:
DATABASE | TABLE

databaseStrategy:
DATABASE_STRATEGY(shardingStrategy)

tableStrategy:
TABLE_STRATEGY(shardingStrategy)

shardingStrategy:
TYPE=strategyType, shardingColumn, shardingAlgorithm

shardingAlgorithm:
SHARDING_ALGORITHM(algorithmDefinition)

strategyDefinition:
TYPE(NAME=keyGenerateStrategyType [, PROPERTIES([algorithmProperties])])

shardingAlgorithmDefinition:
shardingAlgorithmName(algorithmDefinition)

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

keyGeneratorDefinition:
keyGeneratorName (algorithmDefinition)

auditorDefinition:
auditorName (auditorAlgorithmDefinition)

auditorAlgorithmDefinition:
TYPE(NAME=auditorAlgorithmType [, PROPERTIES([algorithmProperties])])

■ STORAGE_UNITS needs to use storage units managed by RDL
■ shardingAlgorithmType specifies the type of automatic sharding algorithm, please refer to Auto Sharding Algo‑

rithm
■ keyGenerateStrategyType specifies the distributed primary key generation strategy, please refer to Key Generate

Algorithm
■ auditorAlgorithmType specifies the sharding audit strategy, please refer to Sharding Audit Algorithm；
■ Duplicate tableName will not be created
■ shardingAlgorithm can be reused by different Sharding Table Rule, so when executing DROP SHARDING TABLE

RULE, the corresponding shardingAlgorithmwill not be removed
■ To remove shardingAlgorithm, please execute DROP SHARDING ALGORITHM

254



Beijing SphereEx Technology Co., Ltd.

■ strategyType specifies the sharding strategy, please refer toSharding Strategy
■ Sharding Table Rule supports both Auto Table and Table at the same time. The two types are different in syntax.

For the corresponding configuration file, please refer to Sharding
■ When using the autoCreativeAlgorithm way to specify shardingStrategy, a new sharding algorithm will be cre‑

ated automatically. The algorithm naming rule is tableName_strategyType_shardingAlgorithmType, such as
t_order_database_inline

■ executing CREATE SHARDING TABLE RULE，a new sharding algorithm will be created automatically. The algo‑
rithm naming rule is tableName_scope_shardingAlgorithmType，such as t_order_database_inline

■ executing CREATE DEFAULT SHARDING STRATEGY，a new sharding algorithm is also created automatically，The
algorithm naming rule is default_scope_shardingAlgorithmType，such as default_database_inline

Sharding Table Reference Rule

CREATE SHARDING TABLE REFERENCE RULE tableReferenceRuleDefinition [, tableReferenceRuleDefinition] ...

ALTER SHARDING TABLE REFERENCE RULE tableReferenceRuleDefinition [, tableReferenceRuleDefinition] ...

DROP SHARDING TABLE REFERENCE RULE tableReferenceRuleDefinition [, tableReferenceRuleDefinition] ...

tableReferenceRuleDefinition:
(tableName [, tableName] ... )

■ ALTER will overwrite the sharding table references in the database with the new configuration

Broadcast Table Rule

CREATE BROADCAST TABLE RULE tableName [, tableName] ...

DROP BROADCAST TABLE RULE tableName [, tableName] ...

Example

Sharding Table Rule

Key Generator
DROP SHARDING KEY GENERATOR snowflake_key_generator;

Auditor
CREATE SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS")
);

ALTER SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS")
);

DROP SHARDING AUDITOR IF EXISTS sharding_key_required_auditor;

Auto Table

255



Beijing SphereEx Technology Co., Ltd.

CREATE SHARDING TABLE RULE t_order (
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

ALTER SHARDING TABLE RULE t_order (
STORAGE_UNITS(ds_0,ds_1,ds_2,ds_3),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="16")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

DROP SHARDING TABLE RULE t_order;

DROP SHARDING ALGORITHM t_order_hash_mod;

Table
CREATE SHARDING TABLE RULE t_order_item (
DATANODES("ds_${0..1}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_ALGORITHM(TYPE(NAME="inline",
PROPERTIES("algorithm‑expression"="ds_${user_id % 2}")))),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM(TYPE(NAME="inline",PROPERTIES(
"algorithm‑expression"="t_order_item_${order_id % 2}")))),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

ALTER SHARDING TABLE RULE t_order_item (
DATANODES("ds_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_ALGORITHM(TYPE(NAME="inline",
PROPERTIES("algorithm‑expression"="ds_${user_id % 4}")))),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM(TYPE(NAME="inline",PROPERTIES(
"algorithm‑expression"="t_order_item_${order_id % 4}")))),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

DROP SHARDING TABLE RULE t_order_item;

DROP SHARDING ALGORITHM database_inline;

CREATE DEFAULT SHARDING DATABASE STRATEGY (
TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm‑
expression"="ds_${order_id % 2}")))
);

ALTER DEFAULT SHARDING DATABASE STRATEGY (
TYPE="standard",SHARDING_COLUMN=another_id,SHARDING_ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm‑
expression"="ds_${another_id % 2}")))
);

DROP DEFAULT SHARDING DATABASE STRATEGY;

256



Beijing SphereEx Technology Co., Ltd.

Sharding Table Reference Rule

CREATE SHARDING TABLE REFERENCE RULE (t_order,t_order_item),(t_1,t_2);

ALTER SHARDING TABLE REFERENCE RULE (t_order,t_order_item);

DROP SHARDING TABLE REFERENCE RULE;

DROP SHARDING TABLE REFERENCE RULE (t_order,t_order_item);

Broadcast Table Rule

CREATE BROADCAST TABLE RULE t_a,t_b;

DROP BROADCAST TABLE RULE t_a;

Single Table

Definition

SET DEFAULT SINGLE TABLE STORAGE UNIT = (storageUnitName | RANDOM)

■ storageUnitName needs to use storage unit managed by RDL. The RANDOM stands for random storage.

Example

SET DEFAULT SINGLE TABLE STORAGE UNIT = ds_0

SET DEFAULT SINGLE TABLE STORAGE UNIT = RANDOM

Read/write Splitting

Syntax

CREATE READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [, readwriteSplittingRuleDefinition] ...

ALTER READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [, readwriteSplittingRuleDefinition] ...

DROP READWRITE_SPLITTING RULE ruleName [, ruleName] ...

readwriteSplittingRuleDefinition:
ruleName ([staticReadwriteSplittingRuleDefinition | dynamicReadwriteSplittingRuleDefinition]

[, loadBalancerDefinition])

staticReadwriteSplittingRuleDefinition:
WRITE_STORAGE_UNIT=storageUnitName, READ_STORAGE_UNITS(storageUnitName [, storageUnitName] ... )

dynamicReadwriteSplittingRuleDefinition:
AUTO_AWARE_RESOURCE=autoAwareResourceName [, WRITE_DATA_SOURCE_QUERY_

ENABLED=writeDataSourceQueryEnabled]

loadBalancerDefinition:
TYPE(NAME=loadBalancerType [, PROPERTIES([algorithmProperties] )] )

257



Beijing SphereEx Technology Co., Ltd.

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

writeDataSourceQueryEnabled:
TRUE | FALSE

Parameters Explained

name Da te Ty
pe

Description

ruleName IDENTI FI
ER

Rule name

stora geUnitName IDENTI FI
ER

Registered data source name

a utoAwareRe source‑
Name

IDENTI FI
ER

Database discovery logic data source name

writeDa taSourceQu
eryEnabled

B OO LE
AN

All read data source are offline, write data source whether the data source is
responsible for read traffic

loadBa lancerType ST RI NG Load balancing algorithm type

Notes

■ Support the creation of static readwrite‑splitting rules and dynamic readwrite‑splitting rules
■ Dynamic readwrite‑splitting rules rely on database discovery rules
■ loadBalancerType specifies the load balancing algorithm type, please refer to Load Balance Algorithm
■ Duplicate ruleName will not be created

Example

// Static
CREATE READWRITE_SPLITTING RULEms_group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0,read_ds_1),
TYPE(NAME="random")
);

// Dynamic
CREATE READWRITE_SPLITTING RULEms_group_1 (
AUTO_AWARE_RESOURCE=group_0,
WRITE_DATA_SOURCE_QUERY_ENABLED=false,
TYPE(NAME="random"));

ALTER READWRITE_SPLITTING RULEms_group_1 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0,read_ds_1,read_ds_2),
TYPE(NAME="random"));

DROP READWRITE_SPLITTING RULEms_group_1;

258



Beijing SphereEx Technology Co., Ltd.

DB Discovery

Syntax

CREATE DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

ALTER DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

DROP DB_DISCOVERY RULE ruleName [, ruleName] ...

DROP DB_DISCOVERY TYPE discoveryTypeName [, discoveryTypeName] ...

DROP DB_DISCOVERY HEARTBEAT discoveryHeartbeatName [, discoveryHeartbeatName] ...

ruleDefinition:
ruleName (storageUnits, typeDefinition, heartbeatDefinition)

storageUnits:
STORAGE_UNITS(storageUnitName [, storageUnitName] ...)

typeDefinition:
TYPE(NAME=typeName [, PROPERTIES([properties] )] )

heartbeatDefinition
HEARTBEAT (PROPERTIES (properties))

properties:
property [, property] ...

property:
key=value

Parameters Explained

name DateType Description
discoveryTypeName IDENTIFIER Database discovery type name
ruleName IDENTIFIER Rule name
discoveryHeartbeatName IDENTIFIER Detect heartbeat name
typeName STRING Database discovery type, such as: MySQL.MGR
storageUnitName IDENTIFIER Storage unit name

Notes

■ discoveryType specifies the database discovery service type, ShardingSphere has built‑in support for MySQL.
MGR

■ Duplicate ruleName will not be created
■ The discoveryType and discoveryHeartbeat being used cannot be deleted
■ Names with ‑ need to use " " when changing
■ When removing the discoveryRule, the discoveryType anddiscoveryHeartbeat usedby the discoveryRulewill not

be removed

259



Beijing SphereEx Technology Co., Ltd.

Example

When creating a discoveryRule, create both discoveryType and discoveryHeartbeat

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
STORAGE_UNITS(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group‑name'='92504d5b‑6dec')),
HEARTBEAT(PROPERTIES('keep‑alive‑cron'='0/5 * * * * ?'))
);

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
STORAGE_UNITS(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group‑name'='246e9612‑aaf1')),
HEARTBEAT(PROPERTIES('keep‑alive‑cron'='0/5 * * * * ?'))
);

DROP DB_DISCOVERY RULE db_discovery_group_0;

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

Encrypt

Syntax

CREATE ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

ALTER ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

DROP ENCRYPT RULE tableName [, tableName] ...

encryptRuleDefinition:
tableName(COLUMNS(columnDefinition [, columnDefinition] ...), QUERY_WITH_CIPHER_COLUMN=queryWithCipherColumn)

columnDefinition:
(NAME=columnName [, PLAIN=plainColumnName] , CIPHER=cipherColumnName, encryptAlgorithm)

encryptAlgorithm:
TYPE(NAME=encryptAlgorithmType [, PROPERTIES([algorithmProperties] )] )

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

260



Beijing SphereEx Technology Co., Ltd.

Parameters Explained

name DateType Description
tableName IDENTIFIER Table name
columnName IDENTIFIER Logic column name
plainColumnName IDENTIFIER Plain column name
cipherColumnName IDENTIFIER Cipher column name
encryptAlgorithmType STRING Encryption algorithm type name

Notes

■ PLAIN specifies the plain column, CIPHER specifies the cipher column
■ encryptAlgorithmType specifies the encryption algorithm type, please refer to Encryption Algorithm
■ Duplicate tableName will not be created
■ queryWithCipherColumn support uppercase or lowercase true or false

KeyManager Syntax

createEncryptKeyManager
: CREATE ENCRYPT KEYMANAGER keyManagerName keyManagerDefinition
;

alterEncryptKeyManager
: ALTER ENCRYPT KEYMANAGER keyManagerName keyManagerDefinition
;

dropEncryptKeyManager
: DROP ENCRYPT KEYMANAGER ifExists? keyManagerName
;

keyManagerDefinition:
(TYPE(NAME=keyManagerName, PROPERTIES([keyManagerProperties]))

);)

keyManagerProperties:
keyManagerProperty [, keyManagerProperty] ...

keyManagerProperty:
key=value

Parameters Explained

name DateType Description
keyManagerName STRING Name of key manager

261



Beijing SphereEx Technology Co., Ltd.

Example

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes‑key‑value'='123456abc'))),
(NAME=order_id, CIPHER =order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=true),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes‑key‑value'='123456abc'))),
(NAME=order_id, CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=FALSE);

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes‑key‑value'='123456abc'))),
(NAME=order_id,CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=TRUE);

DROP ENCRYPT RULE t_encrypt,t_encrypt_2;

Shadow

Syntax

CREATE SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

ALTER SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

DROP SHADOW RULE ruleName [, ruleName] ...

DROP SHADOW ALGORITHM algorithmName [, algorithmName] ...

CREATE DEFAULT SHADOW ALGORITHM shadowAlgorithm

ALTER DEFAULT SHADOW ALGORITHM shadowAlgorithm

DROP DEFAULT SHADOW ALGORITHM [IF EXISTS]

SHOWDEFAULT SHADOW ALGORITHM

SHOW SHADOW ALGORITHMS

shadowRuleDefinition: ruleName(storageUnitMapping, shadowTableRule [, shadowTableRule] ...)

storageUnitMapping: SOURCE=storageUnitName, SHADOW=storageUnitName

shadowTableRule: tableName(shadowAlgorithm [, shadowAlgorithm] ...)

shadowAlgorithm: TYPE(NAME=shadowAlgorithmType, PROPERTIES([algorithmProperties] ...))

algorithmProperties: algorithmProperty [, algorithmProperty] ...

algorithmProperty: key=value

262



Beijing SphereEx Technology Co., Ltd.

Parameters Explained

name DateType Description
ruleName IDENTIFIER Rule name
storageUnitName IDENTIFIER Storage unit name
tableName IDENTIFIER Shadow table name
algorithmName IDENTIFIER Shadow algorithm name
shadowAlgorithmType STRING Shadow algorithm type

Notes

■ Duplicate ruleName cannot be created
■ storageUnitMapping specifies the mapping relationship between the source database and the shadow library.

You need to use the storage unit managed by RDL, please refer to storage unit
■ shadowAlgorithm can act onmultiple shadowTableRule at the same time
■ shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SIMPLE_HINT
■ shadowTableRule can be reused by different shadowRuleDefinition, so when executing DROP SHADOW RULE,

the corresponding shadowTableRule will not be removed
■ shadowAlgorithm can be reused by different shadowTableRule, so when executing ALTER SHADOW RULE, the

corresponding shadowAlgorithmwill not be removed
■ algorithmNamewill be automatically generated according to ruleName, tableName, shadowAlgorithmType and

algorithm collection index. The default name is default_shadow_algorithm.

Example

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order(TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true", "foo"="bar")),TYPE(NAME="REGEX_MATCH", PROPERTIES(
"operation"="insert","column"="user_id", "regex"='[1]'))),
t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"="user_id", "value"='1'))));

ALTER SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order(TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true", "foo"="bar")),TYPE(NAME="REGEX_MATCH", PROPERTIES(
"operation"="insert","column"="user_id", "regex"='[1]'))),
t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"="user_id", "value"='1'))));

DROP SHADOW RULE shadow_rule;

DROP SHADOW ALGORITHM simple_hint_algorithm;

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

ALTER DEFAULT SHADOW ALGORITHM TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="false", "foo"="bar");

SHOWDEFAULT SHADOW ALGORITHM;

DROP DEFAULT SHADOW ALGORITHM;

263



Beijing SphereEx Technology Co., Ltd.

RQL Syntax

RQL (Resource & Rule Query Language) responsible for resources/rules query.

Storage Unit Query

Syntax

SHOW STORAGE UNITS [ [FROM databaseName] | [WHERE USAGE_COUNT = usageCount] ]

Return Value Description

Column Description
name Data source name
type Data source type
host Data source host
port Data source port
db Database name
attribute Data source attribute

Example

mysql> SHOW STORAGE UNITS;
+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑
‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | host | port | db | connection_timeout_milliseconds | idle_timeout_milliseconds | max_lifetime_milliseconds |
max_pool_size | min_pool_size | read_only | other_attributes

|
+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑
‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000 | 1800000 | 50 | 1 | false | {
"dataSourceProperties":{"cacheServerConfiguration":"true","elideSetAutoCommits":"true","useServerPrepStmts":"true",
"cachePrepStmts":"true","rewriteBatchedStatements":"true","cacheResultSetMetadata":"false","useLocalSessionState":"true",
"maintainTimeStats":"false","prepStmtCacheSize":"8192","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},"healthCheckProperties":{},"initializationFailTimeout
":1,"validationTimeout":5000,"leakDetectionThreshold":0,"poolName":"HikariPool‑1","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000 | 1800000 | 50 | 1 | false | {
"dataSourceProperties":{"cacheServerConfiguration":"true","elideSetAutoCommits":"true","useServerPrepStmts":"true",
"cachePrepStmts":"true","rewriteBatchedStatements":"true","cacheResultSetMetadata":"false","useLocalSessionState":"true",
"maintainTimeStats":"false","prepStmtCacheSize":"8192","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},"healthCheckProperties":{},"initializationFailTimeout
":1,"validationTimeout":5000,"leakDetectionThreshold":0,"poolName":"HikariPool‑2","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑
‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

264



Beijing SphereEx Technology Co., Ltd.

mysql> SHOW STORAGE UNITS FROM sharding_db;
+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑
‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | host | port | db | connection_timeout_milliseconds | idle_timeout_milliseconds | max_lifetime_milliseconds |
max_pool_size | min_pool_size | read_only | other_attributes

|
+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑
‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000 | 1800000 | 50 | 1 | false | {
"dataSourceProperties":{"cacheServerConfiguration":"true","elideSetAutoCommits":"true","useServerPrepStmts":"true",
"cachePrepStmts":"true","rewriteBatchedStatements":"true","cacheResultSetMetadata":"false","useLocalSessionState":"true",
"maintainTimeStats":"false","prepStmtCacheSize":"8192","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},"healthCheckProperties":{},"initializationFailTimeout
":1,"validationTimeout":5000,"leakDetectionThreshold":0,"poolName":"HikariPool‑1","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000 | 1800000 | 50 | 1 | false | {
"dataSourceProperties":{"cacheServerConfiguration":"true","elideSetAutoCommits":"true","useServerPrepStmts":"true",
"cachePrepStmts":"true","rewriteBatchedStatements":"true","cacheResultSetMetadata":"false","useLocalSessionState":"true",
"maintainTimeStats":"false","prepStmtCacheSize":"8192","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},"healthCheckProperties":{},"initializationFailTimeout
":1,"validationTimeout":5000,"leakDetectionThreshold":0,"poolName":"HikariPool‑2","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑
‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.84 sec)

Rule Query

This chapter describes the syntax of rule query.

Sharding

Syntax

Sharding Table Rule

SHOW SHARDING TABLE tableRule | RULES [FROM databaseName]

SHOW SHARDING ALGORITHMS [FROM databaseName]

SHOW UNUSED SHARDING ALGORITHMS [FROM databaseName]

SHOW SHARDING AUDITORS [FROM databaseName]

SHOW SHARDING TABLE RULES USED ALGORITHM shardingAlgorithmName [FROM databaseName]

SHOW SHARDING KEY GENERATORS [FROM databaseName]

265



Beijing SphereEx Technology Co., Ltd.

SHOW UNUSED SHARDING KEY GENERATORS [FROM databaseName]

SHOW UNUSED SHARDING AUDITORS [FROM databaseName]

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName [FROM databaseName]

SHOW SHARDING TABLE RULES USED AUDITOR auditorName [FROM databaseName]

SHOWDEFAULT SHARDING STRATEGY

SHOW SHARDING TABLE NODES

tableRule:
RULE tableName

■ Support query all data fragmentation rules and specified table query
■ Support query all sharding algorithms
■ Support query all sharding audit algorithms

Sharding Table Reference Rule

SHOW SHARDING TABLE REFERENCE RULES [FROM databaseName]

Broadcast Table Rule

SHOW BROADCAST TABLE RULES [FROM databaseName]

Sharding Table Rule

Column Description
table Logical table name
actual_data_nodes Actual data node
actual_data_sources Actual data source (Displayed when creating rules by RDL)
database_strategy_type Database sharding strategy type
da tabase_sharding_column Database sharding column
database_s harding_algorithm_type Database sharding algorithm type
database_sh arding_algorithm_props Database sharding algorithm properties
table_strategy_type Table sharding strategy type
table_sharding_column Table sharding column
table_s harding_algorithm_type Table sharding algorithm type
table_sh arding_algorithm_props Table sharding algorithm properties
key_generate_column Sharding key generator column
key_generator_type Sharding key generator type
key_generator_props Sharding key generator properties
auditor_types Sharding auditor types
allow_hint_disable Enable or disable sharding audit hint

266



Beijing SphereEx Technology Co., Ltd.

Sharding Algorithms

Column Description
name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Unused Sharding Algorithms

Column Description
name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Sharding auditors

Column Description
name Sharding audit algorithm name
type Sharding audit algorithm type
props Sharding audit algorithm properties

Unused Sharding Auditors

Column Description
name Sharding audit algorithm name
type Sharding audit algorithm type
props Sharding audit algorithm properties

Sharding key generators

Column Description
name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

Unused Sharding Key Generators

Column Description
name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

267



Beijing SphereEx Technology Co., Ltd.

Default Sharding Strategy

Column Description
name Strategy name
type Sharding strategy type
sharding_column Sharding column
sharding_algorithm_name Sharding algorithm name
sharding_algorithm_type Sharding algorithm type
sharding_algorithm_props Sharding algorithm properties

Sharding Table Nodes

Column Description
name Sharding rule name
nodes Sharding nodes

Sharding Table Reference Rule

Column Description
sharding_table_reference Sharding table reference

Broadcast Table Rule

Column Description
broadcast_table Broadcast table

Sharding Table Rule

SHOW SHARDING TABLE RULES
mysql> SHOW SHARDING TABLE RULES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| table | actual_data_nodes | actual_data_sources | database_strategy_type | database_sharding_column | database_
sharding_algorithm_type | database_sharding_algorithm_props | table_strategy_type | table_sharding_column | table_
sharding_algorithm_type | table_sharding_algorithm_props | key_generate_column | key_generator_type | key_
generator_props |auditor_types | allow_hint_disable |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE | user_id | INLINE | algorithm‑expression:ds_$
{user_id % 2} | INLINE | order_id | INLINE | algorithm‑expression:t_order_${order_id % 2} | order_id |
SNOWFLAKE | |DML_SHARDING_CONDITIONS |true |
| t_order_item | ds_${0..1}.t_order_item_${0..1} | | INLINE | user_id | INLINE | algorithm‑
expression:ds_${user_id % 2} | INLINE | order_id | INLINE | algorithm‑expression:t_order_item_${order_id %
2} | order_item_id | SNOWFLAKE | | | |
| t2 | | ds_0,ds_1 | | | | | mod | id |
mod | sharding‑count:10 | | | | | |

268



Beijing SphereEx Technology Co., Ltd.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
3 rows in set (0.02 sec)

SHOW SHARDING TABLE RULE tableName
mysql> SHOW SHARDING TABLE RULE t_order;
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| table | actual_data_nodes | actual_data_sources | database_strategy_type | database_sharding_column | database_
sharding_algorithm_type | database_sharding_algorithm_props | table_strategy_type | table_sharding_column | table_
sharding_algorithm_type | table_sharding_algorithm_props | key_generate_column | key_generator_type | key_
generator_props | auditor_types | allow_hint_disable |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE | user_id | INLINE | algorithm‑expression:ds_$
{user_id % 2} | INLINE | order_id | INLINE | algorithm‑expression:t_order_${order_id % 2} | order_id |
SNOWFLAKE | | DML_SHARDING_CONDITIONS |true |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW SHARDING ALGORITHMS
mysql> SHOW SHARDING ALGORITHMS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order_inline | INLINE | algorithm‑expression=t_order_${order_id % 2} |
| t_order_item_inline | INLINE | algorithm‑expression=t_order_item_${order_id % 2} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 row in set (0.01 sec)

SHOWUNUSED SHARDING ALGORITHMS
mysql> SHOWUNUSED SHARDING ALGORITHMS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t1_inline | INLINE | algorithm‑expression=t_order_${order_id % 2} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW SHARDING AUDITORS
mysql> SHOW SHARDING AUDITORS;
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| name | type | props |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| dml_audit | DML_SHARDING_CONDITIONS | |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
2 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED ALGORITHM shardingAlgorithmName
mysql> SHOW SHARDING TABLE RULES USED ALGORITHM t_order_inline;
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| type | name |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| table | t_order |

269



Beijing SphereEx Technology Co., Ltd.

+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW SHARDING KEY GENERATORS
mysql> SHOW SHARDING KEY GENERATORS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order_snowflake | snowflake | |
| t_order_item_snowflake | snowflake | |
| uuid_key_generator | uuid | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
3 row in set (0.01 sec)

SHOWUNUSED SHARDING KEY GENERATORS
mysql> SHOW UNUSED SHARDING KEY GENERATORS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| uuid_key_generator | uuid | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOWUNUSED SHARDING KEY AUDITORS
mysql> SHOW UNUSED SHARDING KEY AUDITORS;
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| name | type | props |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| dml_audit | DML_SHARDING_CONDITIONS | |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName
mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName;
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| type | name |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| table | t_order |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED AUDITOR auditorName
mysql> SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required;
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| type | name |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| table | t_order |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW DEFAULT SHARDING STRATEGY
mysql> SHOW DEFAULT SHARDING STRATEGY ;

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | sharding_column | sharding_algorithm_name | sharding_algorithm_type | sharding_algorithm_props |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| TABLE | NONE | | | | |
| DATABASE | STANDARD| order_id | database_inline | INLINE | {algorithm‑expression=ds_${user_id % 2}} |

270



Beijing SphereEx Technology Co., Ltd.

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.07 sec)

SHOW SHARDING TABLE NODES
mysql> SHOW SHARDING TABLE NODES;
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | nodes |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | ds_0.t_order_0, ds_1.t_order_1, ds_0.t_order_2, ds_1.t_order_3 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.02 sec)

Sharding Table Reference Rule

mysql> SHOW SHARDING TABLE REFERENCE RULES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| sharding_table_reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order,t_order_item |
| t1,t2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.00 sec)

Broadcast Table Rule

mysql> SHOW BROADCAST TABLE RULES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| broadcast_table |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_1 |
| t_2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.00 sec)

Single Table

Syntax

SHOWDEFAULT SINGLE TABLE STORAGE UNIT [FROM databaseName]

SHOW SINGLE (TABLES | table) [FROM databaseName]

COUNT SINGLE_TABLE RULE [FROM databaseName]

table:
TABLE tableName

271



Beijing SphereEx Technology Co., Ltd.

Return Value Description

Single Table Storage Unit

Column Description
storage_unit_name Storage unit name

Single Table

Column Description
table_name Single table name
resource_name The resource name where the single table is located

Single Table Rule Count

Column Description
rule_name Single table rule name
database The database name where the single table is located
count The count of single table rules

Example

SHOW DEFAULT SINGLE TABLE STORAGE UNIT
sql> SHOWDEFAULT SINGLE TABLE STORAGE UNIT;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| storage_unit_name |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ds_0 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW SINGLE TABLE tableName
sql> SHOW SINGLE TABLE t_single_0;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| table_name | resource_name |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_single_0 | ds_0 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

SHOW SINGLE TABLES
mysql> SHOW SINGLE TABLES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| table_name | resource_name |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_single_0 | ds_0 |
| t_single_1 | ds_1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.02 sec)

COUNT SINGLE_TABLE RULE

272



Beijing SphereEx Technology Co., Ltd.

mysql> COUNT SINGLE_TABLE RULE;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| rule_name | database | count |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
| t_single_0 | ds | 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
1 row in set (0.02 sec)

Read/write Splitting

Syntax

SHOW READWRITE_SPLITTING RULES [FROM databaseName]

Return Value Description

Column Description
name Rule name
auto_aware_data_source_nameAuto‑Aware discovery data source name (Display configuration dynamic readwrite

splitting rules)
writ
e_data_source_query_enabled

All readdata source are offline, write data sourcewhether the data source is respon‑
sible for read traffic

write_data_source_name Write data source name
read_data_source_names Read data source name list
load_balancer_type Load balance algorithm type
load_balancer_props Load balance algorithm parameter

Example

Static Readwrite Splitting Rules
mysql> SHOW READWRITE_SPLITTING RULES;
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | auto_aware_data_source_name | write_data_source_name | read_data_source_names | load_balancer_type | load_
balancer_props |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ms_group_0 | | ds_primary | ds_slave_0, ds_slave_1 | random | |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.00 sec)

Dynamic Readwrite Splitting Rules
mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | auto_aware_data_source_name | write_data_source_query_enabled | write_data_source_name | read_data_source_
names | load_balancer_type | load_balancer_props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| readwrite_ds | ms_group_0 | | | | random | read_weight:2:1 |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

Static Readwrite Splitting Rules And Dynamic Readwrite Splitting Rules

273



Beijing SphereEx Technology Co., Ltd.

mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | auto_aware_data_source_name | write_data_source_query_enabled | write_data_source_name | read_data_source_
names | load_balancer_type | load_balancer_props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| readwrite_ds | ms_group_0 | | write_ds | read_ds_0, read_ds_1 | random | read_weight=2:1
|
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.00 sec)

DB Discovery

Syntax

SHOW DB_DISCOVERY RULES [FROM databaseName]

SHOW DB_DISCOVERY TYPES [FROM databaseName]

SHOW DB_DISCOVERY HEARTBEATS [FROM databaseName]

Return Value Description

DB Discovery Rule

Column Description
group_name Rule name
data_source_names Data source name list
primary_data_source_name Primary data source name
discovery_type Database discovery service type
discovery_heartbeat Database discovery service heartbeat

DB Discovery Type

Column Description
name Type name
type Type category
props Type properties

DB Discovery Heartbeat

Column Description
name Heartbeat name
props Heartbeat properties

274



Beijing SphereEx Technology Co., Ltd.

Example

DB Discovery Rule
mysql> SHOW DB_DISCOVERY RULES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| group_name | data_source_names | primary_data_source_name | discovery_type |
discovery_heartbeat |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| db_discovery_group_0 | ds_0,ds_1,ds_2 | ds_0 | {name=db_discovery_group_0_mgr, type=MySQL.MGR, props=
{group‑name=92504d5b‑6dec}} | {name=db_discovery_group_0_heartbeat, props={keep‑alive‑cron=0/5 * * * * ?}} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.20 sec)

DB Discovery Type
mysql> SHOW DB_DISCOVERY TYPES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | type | props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| db_discovery_group_0_mgr | MySQL.MGR | {group‑name=92504d5b‑6dec} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

DB Discovery Heartbeat
mysql> SHOW DB_DISCOVERY HEARTBEATS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | props |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| db_discovery_group_0_heartbeat | {keep‑alive‑cron=0/5 * * * * ?} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 row in set (0.01 sec)

Encrypt

Syntax

SHOW ENCRYPT RULES [FROM databaseName]

SHOW ENCRYPT TABLE RULE tableName [FROM databaseName]

■ Support to query all data encryption rules and specify logical table name query

275



Beijing SphereEx Technology Co., Ltd.

Return Value Description

Column Description
table Logical table name
logic_column Logical column name
logic_data_type Logical column data type
cipher_column Ciphertext column name
cipher_data_type Ciphertext column data type
plain_column Plaintext column name
plain_data_type Plaintext column data type
assisted_query_column Assisted query column name
assisted_query_data_type Assisted query column data type
encryptor_type Encryption algorithm type
encryptor_props Encryption algorithm parameter
query_with_cipher_column Whether to use encrypted column for query

Example

Show Encrypt Rules
mysql> SHOW ENCRYPT RULES FROM encrypt_db;
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type | plain_column | plain_data_type | assisted_
query_column | assisted_query_data_type | encryptor_type | encryptor_props | query_with_cipher_column |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_encrypt | user_id | | user_cipher | | user_plain | | | | AES | aes‑key‑
value=123456abc | true |
| t_encrypt | order_id | | order_cipher | | | | | | MD5 | | true

|
| t_encrypt_2 | user_id | | user_cipher | | user_plain | | | | AES | aes‑key‑
value=123456abc | false |
| t_encrypt_2 | order_id | | order_cipher | | | | | | MD5 | |
false |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
4 rows in set (0.78 sec)

Show Encrypt Table Rule Table Name
mysql> SHOW ENCRYPT TABLE RULE t_encrypt;
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type | plain_column | plain_data_type | assisted_
query_column | assisted_query_data_type | encryptor_type | encryptor_props | query_with_cipher_column |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_encrypt | user_id | | user_cipher | | user_plain | | | | AES | aes‑key‑
value=123456abc | true |
| t_encrypt | order_id | | order_cipher | | | | | | MD5 | | true

|
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.01 sec)

mysql> SHOW ENCRYPT TABLE RULE t_encrypt FROM encrypt_db;
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type | plain_column | plain_data_type | assisted_
query_column | assisted_query_data_type | encryptor_type | encryptor_props | query_with_cipher_column |

276



Beijing SphereEx Technology Co., Ltd.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_encrypt | user_id | | user_cipher | | user_plain | | | | AES | aes‑key‑
value=123456abc | true |
| t_encrypt | order_id | | order_cipher | | | | | | MD5 | | true

|
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.01 sec))

Shadow

Syntax

SHOW SHADOW shadowRule | RULES [FROM databaseName]

SHOW SHADOW TABLE RULES [FROM databaseName]

SHOW SHADOW ALGORITHMS [FROM databaseName]

shadowRule:
RULE ruleName

■ Support querying all shadow rules and specified table query
■ Support querying all shadow table rules
■ Support querying all shadow algorithms

Return Value Description

Shadow Rule

Column Description
rule_name Rule name
source_name Source database
shadow_name Shadow database
shadow_table Shadow table

Shadow Table Rule

Column Description
shadow_table Shadow table
shadow_algorithm_name Shadow algorithm name

277



Beijing SphereEx Technology Co., Ltd.

Shadow Algorithms

Column Description
shadow_algorithm_name Shadow algorithm name
type Shadow algorithm type
props Shadow algorithm properties
is_default Default

Shadow Rule status

Column Description
status Enable

Example

SHOW SHADOW RULES
mysql> SHOW SHADOW RULES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| rule_name | source_name | shadow_name | shadow_table |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
| shadow_rule_2 | ds_2 | ds_shadow_2 | t_order_item |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.02 sec)

SHOW SHADOW RULE ruleName
mysql> SHOW SHADOW RULE shadow_rule_1;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| rule_name | source_name | shadow_name | shadow_table |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 rows in set (0.01 sec)

SHOW SHADOW TABLE RULES
mysql> SHOW SHADOW TABLE RULES;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| shadow_table | shadow_algorithm_name |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order_1 | user_id_match_algorithm,simple_hint_algorithm_1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1 rows in set (0.01 sec)

SHOW SHADOW ALGORITHMS
mysql> SHOW SHADOW ALGORITHMS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| shadow_algorithm_name | type | props | is_default |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| user_id_match_algorithm | REGEX_MATCH | operation=insert,column=user_id,regex=[1] | false |
| simple_hint_algorithm_1 | SIMPLE_HINT | shadow=true,foo=bar | false |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
2 rows in set (0.01 sec)

278



Beijing SphereEx Technology Co., Ltd.

RAL Syntax

RAL (Resource & Rule Administration Language) is responsible for the added‑on features of hint, transaction type
switch, resharding, sharding execute planning and so on.

Hint

Statement Function Example
set read write_splitting
hint source = [auto / write]

For current connection, set read/write splitting routing
strategy (automatic or forced to write data source)

set readwr ite_splitting
hint source = write

set sharding hint
database_value = yy

For current connection, set sharding value for database
sharding only, yy: sharding value

set sharding hint d
atabase_value = 100

add sharding hint
database_value xx= yy

For current connection, add sharding value for table, xx:
logic table, yy: database sharding value

add sharding hint d
atabase_value t_order =
100

add sharding hint ta‑
ble_value xx = yy

For current connection, add sharding value for table, xx:
logic table, yy: table sharding value

add sharding hint ta‑
ble_value t_order = 100

clear hint For current connection, clear all hint settings clear hint
clear [sharding hint / read
write_splitting hint]

For current connection, clear hint settings of sharding or
readwrite splitting

clear readwr ite_splitting
hint

show [sharding / readw
rite_splitting] hint status

For current connection, queryhint settingsof shardingor
readwrite splitting

show readwr ite_splitting
hint status

Migration

Statement Function Example
SHOWMIGRATION RULE Showmigration rule SHOWMIGRATION RULE
ALTER MIGRATION RULE Alter migration rule ALTER MIGRATION RULE (READ(RATE_LIMITER

(TYPE(NAME=‘QPS’,PROPERTIES(‘qps’=‘5000’
)))))

MIGRATE TABLE
ds.schema.table INTO table

Migrate table from
source to target

MIGRATE TABLE ds_0.public.t_order INTO t_order

SHOWMIGRATION LIST Query running list SHOWMIGRATION LIST
SHOWMIGRATIONSTATUS jobId Query migration status SHOWMIGRATION STATUS 1234
STOP MIGRATION jobId Stopmigration STOP MIGRATION 1234
START MIGRATION jobId Start the stopped mi‑

gration
START MIGRATION 1234

CHECK MIGRATION jobId Data consistency check CHECK MIGRATION 1234
SHOW MIGRATION CHECK AL‑
GORITHMS

Show available consis‑
tency check algorithms

SHOWMIGRATION CHECK ALGORITHMS

CHECK MIGRATION jobId BY
TYPE(NAME=a lgorithmType‑
Name)

Data consistency check
with defined algorithm

CHECK MIGRATION 1234 BY TYPE(NAME=
“DATA_MATCH”)

SHOW MIGRATION CHECK STA‑
TUS jobId

Query data consistency
check status

SHOWMIGRATION CHECK STATUS 1234

STOP MIGRATION CHECK jobId Stop data consistency
check

STOP MIGRATION CHECK 1234

START MIGRATION CHECK jobId Start data consistency
check

START MIGRATION CHECK 1234

ROLLBACK MIGRATION jobId Rollback migration ROLLBACK MIGRATION 1234
COMMIT MIGRATION jobId Commit migration COMMIT MIGRATION 1234

279



Beijing SphereEx Technology Co., Ltd.

Resharding

Statement Function Example
SHOW RESHARDING RULE Show resharding rule SHOW RESHARDING RULE
ALTER RESHARDING RULE Alter resharding rule ALTER RESHARDING RULE (READ(RATE_LIMITER

(TYPE(NAME=‘QPS’,PROPERTIES(‘qps’=‘5000’
)))))

SHOW RESHARDING LIST Query running list SHOW RESHARDING LIST
SHOWRESHARDINGSTATUS jo‑
bId

Query resharding status SHOW RESHARDING STATUS 1234

STOP RESHARDING jobId Stop resharding STOP RESHARDING 1234
START RESHARDING jobId Start resharding START RESHARDING 1234
CHECK RESHARDING jobId Data consistency check

with algorithm
CHECK RESHARDING 1234

SHOW RESHARDING CHECK AL‑
GORITHMS

Show available consis‑
tency check algorithms

SHOW RESHARDING CHECK ALGORITHMS

CHECK RESHARDING jobId BY
TYPE(NAME=a lgorithmType‑
Name)

Data consistency check
with defined algorithm

CHECK RESHARDING 1234 BY
TYPE(NAME=DEFAULT)

SHOW RESHARDING CHECK
STATUS jobId

Query data consistency
check status

SHOW RESHARDING CHECK STATUS 1234

STOP RESHARDING CHECK jo‑
bId

Stop data consistency
check

STOP RESHARDING CHECK 1234

START RESHARDING CHECK jo‑
bId

Start data consistency
check

START RESHARDING CHECK 1234

STOP RESHARDING SOURCE
WRITING jobId

The source DBPlusEngine
data source is discontin‑
ued

STOP RESHARDING SOURCEWRITING 1234

FORCE? APPLY RESHARDING jo‑
bId

Switch to target DB‑
PlusEngine metadata

APPLY RESHARDING 1234

RESTORE RESHARDING
SOURCEWRITING jobId

The source DBPlusEngine
data source resumes writ‑
ing

RESTORE RESHARDING SOURCEWRITING 1234

FORCE? COMMIT RESHARDING
jobId

Commit resharding COMMIT RESHARDING 1234

ROLLBACK RESHARDING jobId Rollback resharding ROLLBACK RESHARDING 1234

280



Beijing SphereEx Technology Co., Ltd.

Encryption

St atement Function Example
SHOW ENC
RYPTING
RULE

Show encryption rule SHOW ENCRYPTING RULE

ALTER ENC
RYPTING
RULE

Alter encryption rule ALTER ENCRYPTING RULE
(READ(RATE_LIMITER (TYPE(N AME=
‘QPS’,PROPERTIE S(‘qps’=‘5000’
)))))

SHOW ENC
RYPTING
LIST;

Query running list SHOW ENCRYPTING LIST;

SHOW ENC
RYPTING
STATUS {
jobId};

Query task status, jobId: task ID SHOW ENCRYPTING STATUS 1234;

ENCRYPT
TABLE {tabl
eName};

Start running task, tableName: table name ENCRYPT TABLE t_user;

COMMIT ENC
RYPTING { jo‑
bId};

Submit the encryption task, jobId: task id. The current
version of commit only cleans up jobs, and subsequent
versions will support commit and rollback

COMMIT ENCRYPTING 1234;

Decryption

Stat ement Function Example
SHOW DECRY
PTING RULE

Show decryption rule SHOW DECRYPTING RULE

ALTER DECRY
PTING RULE

Alter decryption rule ALTER DECRYPTING RULE
(READ(RATE_LIMITER (TYPE (NAME=
‘QPS’,PROPERTI ES(‘qps’=‘5000’
)))))

SHOW DECRY
PTING LIST;

Query running list SHOW DECRYPTING LIST;

SHOW DE‑
CRY PTING
S TATUS {jo
bId};

Query task status, jobId: task ID SHOW DECRYPTING STATUS 1234;

DE CRYPT TA‑
BLE {t ableN
ame};

Start running task, tableName: table name DECRYPT TABLE t_user;

C OMMIT DE‑
CRYPTING {jo
bId};

Submit the decryption task, jobId: task id. The current
version of commit only cleans up jobs, and subsequent
versions will support commit and rollback

COMMIT ENCRYPTING 1234;

281



Beijing SphereEx Technology Co., Ltd.

Circuit Breaker

Statement Function Example
ALTER READWRITE_SPLITTING RULE [ groupName
] (ENABLE / DISABLE) storageUnitName [FROM
databaseName]

Enable or disable read
data source

ALTER REA
DWRITE_SPLITTING RULE
group_1 ENABLE read_ds_1

[ENABLE / DISABLE] COMPUTE NODE instanceId Enable or disable proxy
instance

DISABLE COMPUTE NODE in‑
stance_1

SHOW COMPUTE NODES Query proxy instance in‑
formation

SHOW COMPUTE NODES

SHOWSTATUS FROMREADWRITE_SPLITTING (RULES
/ RULE groupName) [FROM databaseName]

Query data sources sta‑
tus of readwrite splitting
groups

SHOW STATUS FROM REA
DWRITE_SPLITTING RULES

282



Beijing SphereEx Technology Co., Ltd.

Global Rule

Statement Function Example
SHOW AUTHORITY RULE Query authority rule configura‑

tion
SHOW AUTHORITY RULE

SHOW TRANSACTION RULE Query transaction rule configura‑
tion

SHOW TRANSACTION RULE

SHOW SQL_PARSER RULE Query SQL parser rule configura‑
tion

SHOW SQL_PARSER RULE

SHOW TRAFFIC[ RULES / RULE rule‑
Name]

Query the specified double rout‑
ing rules or all double routing
rules

SHOW TRAFFIC RULES;

CREATE TRAFFIC RULE
sql_match_traffic (
LABLES(xxx),TRAFFIC_ AL‑
GORITHM(TYPE(NAME=
xxx,PROPERTIES(“key”=
“value”))),LOAD_BAL AN‑
CER(TYPE(NAME=xxx, PROPERTI
ES(“key”=“value”))))

Create a dual routing
rule,TRAFFIC_ALGORITHM sup‑
port SQL_MATCH and SQL_HINT
two type s;LOAD_BALANCER
support RANDOM and
ROUND_ROBIN two types.

CREATE TRAFFIC RULE
sql_match_traffic (LABLES(
OLTP),TRAFFIC_ALGORI
THM(TYPE(NAME=SQL_MA
TCH,PROPERTIES(“sql”= “SE‑
LECT * FROM t_order WHERE or‑
der_id = ?; UPDATE t_order SET
order_id = ?;”))),LOAD_BALANCER
(TYPE(NAME=RANDOM)))

ALTER TRANSACTION RULE(DEFAU
LT=xx,TYPE(NAME=xxx, PROPER TIES(
“key1”=“value1”,“key2”=“value2”
⋯)))

Alter transaction rule configur
ation，DEFAULT: default transac‑
tion type，support LOCAL、XA、
BASE; NAME: name of transac‑
tion manager, support Atomikos,
Narayana and Bitronix

ALTER TRANSACTION
RULE(DEFAULT=XA
,TYPE(NAME=Narayana, PROPER‑
TIES(“datab aseName”=“jbossts”,
“host”=“127.0.0.1”)))

ALTER SQL_PARSER RULE
SQL_COMM ENT_PARSE_ENABLE=xx,
PARSE_TREE_CACHE( INI‑
TIAL_CAPACITY=xx, MAXI‑
MUM_SIZE=xx, CO NCUR‑
RENCY_LEVEL=xx), S
QL_STATEMENT_CACHE(I NI‑
TIAL_CAPACITY=xxx, MAXI‑
MUM_SIZE=xxx, CO NCUR‑
RENCY_LEVEL=xxx)

Alter SQL parser rule
configuration, SQL_CO
MMENT_PARSE_ENABLE:
whether to parse the SQL com‑
ment, PARSE_TREE_CACHE: lo‑
cal cache configuration of syntax
tree, S QL_STATEMENT_CACHE:
local cache of SQL statement

ALTER SQL_PARSER
RULE SQL_COMMENT
_PARSE_ENABLE=false,
PARSE_TREE_CACHE( INI‑
TIAL_CAPACITY=10, MAX‑
IMUM_SIZE=11, C ON‑
CURRENCY_LEVEL=1),
SQL_STATEMENT_CACHE(
INITIAL_CAPACITY=11, MAX‑
IMUM_SIZE=11, CO NCUR‑
RENCY_LEVEL=100)

ALTER TRAFFIC RULE
sql_match_traffic (
LABLES(xxx),TRAFFIC_ AL‑
GORITHM(TYPE(NAME=
xxx,PROPERTIES(“key”=
“value”))),LOAD_BALANCER(TY
PE(NAME=xxx,PROPERTI ES(“key”=
“value”))))

Modify dual routing
rules,TRAFFIC_ALGORITHM sup‑
port SQL_MATCH and SQL_HINT
two type s;LOAD_BALANCER
support RANDOM and
ROUND_ROBIN two types.

ALTER TRAFFIC RULE
sql_match_traffic ( LABLES(
OLTP),TRAFFIC_ALGORI
THM(TYPE(NAME=SQL_MA
TCH,PROPERTIES(“sql”= “SE‑
LECT * FROM t_order WHERE or‑
der_id = ?; UPDATE t_order SET
order_id = ?;”))),LOAD_BALANCER
(TYPE(NAME=RANDOM)))

DROP TRAFFIC RULE ruleName [, rule‑
Name]

Delete double routing rule DROP TRAFFIC RULE
sql_match_traffic

283



Beijing SphereEx Technology Co., Ltd.

Variable Management

In DistSQL, attribute configuration names are separated by underscores.

Statement Function Example
SET DIST VARIABLE variable_name = xx variable_name as Attribute Co nfigu‑

ration of proxy
SET VARIABLE sql_show = true

SHOW DIST VARIABLES Query all attribute configurations of
the proxy

SHOW ALL VARIABLES

SHOW DIST VARIABLE WHERE name =
variable_name

Query the specified proxy attribute SHOW VARIABLE WHERE name
= sql_show

■ Special variables
The special variables are not in Attribute Configuration of proxy, However, it can be dynamically managed through
DistSQL:

Statement Function Example
SHOW DIST VARIABLE WHERE
name = transaction_type

Query Transaction Type SHOW DIST VARIABLE WHERE
name = transaction_type

SET DIST VARIABLE transac‑
tion_type = xx

Modify the transaction type of the current
connection, support LOCAL, XA, BASE

SET DIST VARIABLE transac‑
tion_type = XA

SHOW DIST VARIABLE WHERE
name = agen t_plugins_enabled

Querying agent plugin enabling status SHOW DIST VARIABLE WHERE
name = agen t_plugins_enabled

SET DIST VARIABLE agen
t_plugins_enabled = xx

Set the enabling status of the agent plug‑
in. The value is Boolean

SET DIST VARIABLE agen
t_plugins_enabled = true

SHOW DIST VARIABLE WHERE
name = c ached_connections

Query the number of connections cur‑
rently cached

SHOW DIST VARIABLE WHERE
name = c ached_connections

SHOW DIST VARIABLE WHERE
name = general_query_log

Querying the Full Log Enable Status SHOW DIST VARIABLE WHERE
name = general_query_log

SET DIST VARIABLE gen‑
eral_query_log = xx

Set the Full Audit Log Enable Status SET DIST VARIABLE gen‑
eral_query_log = true

SHOW DIST VARIABLE WHERE
name = slow_query_log

Querying the Slow Log Enable Status SHOW DIST VARIABLE WHERE
name = slow_query_log

SET DIST VARIABLE
slow_query_log = xx

Set the Slow Log Enable Status SET DIST VARIABLE
slow_query_log = true

SHOW DIST VARIABLE WHERE
name = long_query_time

Query Slow Query Threshold SHOW DIST VARIABLE WHERE
name = long_query_time

SET DIST VARIABLE
long_query_time = xx

Set slow query threshold, unit is millisec‑
onds

SET DIST VARIABLE
long_query_time = 5000

284



Beijing SphereEx Technology Co., Ltd.

Other

Statement Function Example
SHOW COMPUTE NODE INFO Query the instance information of the proxy SHOW COMPUTE NODE

INFO
SHOW COMPUTE NODE MODE Query the mode configuration of the proxy SHOW COMPUTE NODE

MODE
LABEL COMPUTE NODE instan‑
ceId WITH labelName [ , label‑
Name ]

Add tags to instances. LABEL COMPUTE NODE
1 0.7.7.136@3309 with
olap,group_by

UNLABEL COMPUTE NODE in‑
stanceId

Remove all tags from instances. UNLABEL COMPUTE NODE
1 0.7.7.136@3309

UNLABEL COMPUTE NODE in‑
stanceId WITH labelName

Removes the specified tags from the instance UNLABEL COMPUTE NODE
1 0.7.7.136@3309 WITH
group_by

RELABEL COMPUTE NODE in‑
stanceId with labelName [ ,
labelName ]

Readd tags to the instances.(overwrite the origi‑
nal tags)

RELABEL COMPUTE NODE
1 0.7.7.136@3309 with la‑
bel_9, label_0

REFRESH TABLE METADATA Refresh the metadata of all tables REFRESH TABLE METADATA
REFRESH TABLE METADATA
tableName

Refresh the metadata of the specified table REFRESH TABLE METADATA
t_order

REFRESH TABLE METADATA
tableName FROM STORAGE UNIT
storageUnitName

Refresh the tables’metadata in the specified
data source

REFRESH TABLE METADATA
t_order FROM STORAGE
UNIT ds_1

REFRESH TABLE METADATA
FROM STORAGE UNIT storageU‑
nitName SCHEMA schemaName

Refresh the tables’metadata in a schema of a
specifieddata source. If there areno tables in the
schema, the schema will be deleted.

REFRESH TABLE METADATA
FROM STORAGE UNIT ds_1
SCHEMA db_schema

SHOW TABLE METADATA table‑
Name [, tableName]⋯

Query table metadata SHOW TABLE METADATA
t_order

EXPORT DATABASE CONFIGURA‑
TION [FROM databaseName] [TO
FILE“filePath”]

Export data sources and rule configurations to
YAML format

EXPORT DATABASE CON‑
FIGURATION FROM read‑
writ e_splitting_db

IMPORT DATABASE CONFIGURA‑
TION FILE=“file_path”

Import data sources and rule configurations
from YAML, only supports import into an empty
database

IMPORT DATABASE
CONFIGURATION FILE
= “/xxx/config‑ shard‑
ing.yaml”

SHOW RULES USED STORAGE
UNIT storageUnitName [FROM
databaseName]

Query the rules for using the specified data
source in database

SHOW RULES USED STOR‑
AGE UNIT ds_0 FROM
databaseName

Notice

DBPlusEngine‑Proxydoes not support hint bydefault, to support it, set proxy‑hint‑enabled to true in conf/server.yaml.

RUL Syntax

RUL (Resource Utility Language) responsible for SQL parsing, SQL formatting, preview execution plan andmore utility
functions.

285

mailto:0.7.7.136@3309
mailto:0.7.7.136@3309
mailto:0.7.7.136@3309
mailto:0.7.7.136@3309


Beijing SphereEx Technology Co., Ltd.

SQL Utility

Statement Function Example
PARSE SQL Parse SQL and output abstract syntax tree PARSE SELECT * FROM t_order
FORMAT SQL Parse SQL and output formated SQL statement FORMAT SELECT * FROM t_order
PREVIEW SQL Preview SQL execution plan PREVIEW SELECT * FROM t_order

Usage

This chapter will introduce how to use DistSQL to manage resources and rules in a distributed database.

Introduction

Wewill here use MySQL as example, but the same can be applicable to other databases.
1. Start the MySQL service.
2. Create to be registered MySQL databases.
3. Create role and user in MySQL with creation permission for DBPlusEngine‑Proxy.
4. Start Zookeeper service.
5. Addmode and authentication configurations to server.yaml.
6. Start DBPlusEngine‑Proxy.
7. Use SDK or terminal connect to DBPlusEngine‑Proxy.

Create Logic Database

1. Create logic database
CREATE DATABASE foo_db;

2. Use newly created logic database
USE foo_db;

Resource Operation

For more details please see concentrate rule examples.

Rule Operation

For more details please see concentrate rule examples.

286



Beijing SphereEx Technology Co., Ltd.

Notice

1. Currently, DROP DATABASE will only remove the logical distributed database, not the user’s actual database.
2. DROP TABLE will delete all logical fragmented tables and actual tables in the database.
3. CREATE DATABASE will only create a logical distributed database, so users need to create actual databases in

advance.

Sharding

Resource Operation

■ Configure data source information
REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

Rule Operation

■ Create sharding rule
CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

■ Create sharding table
CREATE TABLE `t_order` (
`order_id` intNOT NULL,
`user_id` intNOT NULL,
`status` varchar(45) DEFAULT NULL,
PRIMARY KEY (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

■ Drop sharding table
DROP TABLE t_order;

■ Drop sharding rule
DROP SHARDING TABLE RULE t_order;

■ Unregister storage unit

287



Beijing SphereEx Technology Co., Ltd.

UNREGISTER STORAGE UNIT ds_0, ds_1;

■ Drop distributed database
DROP DATABASE foo_db;

readwrite_splitting

Resource Operation

REGISTER STORAGE UNIT write_ds (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),read_ds (
HOST="127.0.0.1",
PORT=3307,
DB="ds_0",
USER="root",
PASSWORD="root"

);

Rule Operation

■ Create readwrite_splitting rule
CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds),
TYPE(NAME="random")
);

■ Alter readwrite_splitting rule
ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds),
TYPE(NAME="random",PROPERTIES("read_weight:"2:0"))
);

■ Drop readwrite_splitting rule
DROP READWRITE_SPLITTING RULE group_0;

■ Unregister storage unit
UNREGISTER STORAGE UNIT write_ds,read_ds;

■ Drop distributed database
DROP DATABASE readwrite_splitting_db;

288



Beijing SphereEx Technology Co., Ltd.

Encrypt

Resource Operation

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

);

Rule Operation

■ Create encrypt rule
CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes‑key‑value'='123456abc'))),
(NAME=order_id,PLAIN=order_plain,CIPHER =order_cipher,TYPE(NAME='RC4',PROPERTIES('rc4‑key‑value'='123456abc')))

));

■ Create encrypt table
CREATE TABLE `t_encrypt` (
`id` int(11)NOT NULL,
`user_id` varchar(45) DEFAULT NULL,
`order_id` varchar(45) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

■ Alter encrypt rule
ALTER ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes‑key‑value'='123456abc')))

));

■ Drop encrypt rule
DROP ENCRYPT RULE t_encrypt;

■ Unregister storage unit
UNREGISTER STORAGE UNIT ds_0;

■ Drop distributed database

289



Beijing SphereEx Technology Co., Ltd.

DROP DATABASE encrypt_db;

Shadow

Resource Operation

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"
),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"
),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"
);

Rule Operation

■ Create shadow rule
CREATE SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_1,
t_order(TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar")),TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"=
"insert","column"="user_id", "regex"='[1]'))),
t_order_item(TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar"))));

■ Alter shadow rule
ALTER SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_2,
t_order_item(TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar"))));

■ Drop shadow rule
DROP SHADOW RULE group_0;

■ Unregister storage unit
UNREGISTER STORAGE UNIT ds_0,ds_1,ds_2;

■ Drop distributed database
DROP DATABASE foo_db;

290



Beijing SphereEx Technology Co., Ltd.

DB Discovery

Resource Operation

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

Rule Operation

■ Create DB discovery rule
CREATE DB_DISCOVERY RULE db_discovery_group_0 (
STORAGE_UNITS(ds_0, ds_1),
TYPE(NAME='MySQL.MGR',PROPERTIES('group‑name'='92504d5b‑6dec')),
HEARTBEAT(PROPERTIES('keep‑alive‑cron'='0/5 * * * * ?'))
);

■ Alter DB discovery rule
ALTER DB_DISCOVERY RULE db_discovery_group_0 (
STORAGE_UNITS(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group‑name'='92504d5b‑6dec')),
HEARTBEAT(PROPERTIES('keep‑alive‑cron'='0/5 * * * * ?'))
);

■ Drop db_discovery rule
DROP DB_DISCOVERY RULE db_discovery_group_0;

■ Drop db_discovery type
DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

■ Drop db_discovery heartbeat
DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

■ Unregister storage unit
UNREGISTER STORAGE UNIT ds_0,ds_1,ds_2;

■ Drop distributed database

291



Beijing SphereEx Technology Co., Ltd.

DROP DATABASE discovery_db;

7.2.5 Authority Control

Authority Classification

A uth ori zat ion I tem SE LE
CT

IN SE
RT

UP DA
TE

DELETE CR EA
TE

D R O
P

A LT
ER

IN
DEX

CR
EATE_USER

SUPE
R

Glo bal Aut hor ity ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  
Obj ect Aut hor ity /Da
tab ase

✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  / /

Obj ect Aut hor ity /Ta
ble

✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  / /

Obj ectAuthori ty/Col
umn

✓✓✓  ✓✓✓  ✓✓✓  / / / / / / /

Global Authority

Global authority refers to that the authorization obtained by the user does not distinguish the target object, and the
user can perform corresponding operations on any logical database and logical table.
For example,，if the following instruction grants the global INSERT, SELECT, UPDATE and DELETE authorities to user
‘sharding’@‘%’, the user can perform DML operation on tables in any logical database.
‑‑ The following two statements are equivalent.
GRANT DIST INSERT,SELECT,UPDATE,DELETE TO 'sharding'@'%';
GRANT DIST INSERT,SELECT,UPDATE,DELETE TO sharding;

Note: The global authority includes two special authorities: CREATE_USER and SUPER.
Get CREATE_USER authorization user can perform the following operations:

Operation Description
CREATE USER Create User
ALTER USER Modify User
DROP USER Delete User
CREATE ROLE Create Role
DROP ROLE Delete Role
REVOKE ALL PRIVILEGES Revoke all authorization of a user or role.

SUPER represents the highest authority of the database system. By default, the initial user configured before Shard‑
ingSphere starts has super authorization.

Object Authority

Object Authority means that the granted authority is limited by the scope of action, and users cannot perform corre‑
sponding operations outside the scope of authorization.
The scope of object authority can be all logical databases, or you can specify single or multiple logical databases and
tables and columns in the databases.
For example, the following instructions sets all authorities of t_order in logical database sharding_db to user‘shard‑
ing’@‘%’. After that the user can operate on table sharding_db.t_order. However the user cannot operate other
tables of sharding_db without additional authorization.

292



Beijing SphereEx Technology Co., Ltd.

GRANT DIST ALL ON sharding_db.t_order TO sharding;

DistSQL List

The complete authority management list of DistSQL is as follows:

Description Syntax Examples
Create user CREATEDISTUSER‘user’@‘host’

IDENTIFIED BY‘password’;
CREATE DIST USER ‘sharding’@‘%’IDENTIFIED BY
‘123456’;

Modifyuserpass‑
word

ALTER DIST USER‘user’@‘host’
IDENTIFIED BY‘password’;

ALTER DIST USER ‘sharding’@‘%’IDENTIFIED BY
‘sharding’;

Delete user DROP DIST USER‘user’@‘host’
;

DROP DIST USER‘sharding’@‘%’;

Create role CREATE DIST ROLE role; CREATE DIST ROLE admin;
Delete role DROP DIST ROLE role; DROP DIST ROLE admin;
Assign user roles GRANTDIST roleTO‘user’@‘host’

;
GRANT DIST admin TO‘sharding’@‘%’;

Cancel user role REVOKE DIST role FROM‘user’@
‘host’;

REVOKE DIST admin FROM‘sharding’@‘%’;

Grant global au‑
thorities

GRANT DIST SELECT TP‘user’@
‘host’;

GRANT DIST SELECT TO‘sharding’@‘%’;

Grant authorities
(all objects)

GRANT DIST privileges ON . to
‘user’@‘host’;

GRANT DIST SELECT, INSERT ON . TO‘sharding’@‘%’
;

Grant authority
(database level)

GRANT DIST privileges ON
schema.* to ‘user’@‘host’
;

GRANT DIST SELECT, INSERT ON sharding_db.* TO
‘sharding’@‘%’;

Grant authority
(table level)

GRANT DIST privileges ON
schema.table to ‘user’@‘host’
;

GRANT DIST SELECT, INSERT ON sharding_db.t_order TO
‘sharding’@‘%’;

Grant authority
(column level)

GRANT DIST privileges ON
schema.table to ‘user’@‘host’
;

GRANT DIST SELECT (order_id), SELECT (user_id, status)
ON sharding_db. t_order TO‘sharding’@‘%’;

Revoke all au‑
thorities

REVOKE DIST ALL FROM‘user’@
‘host’;

REVOKE DIST ALL FROM‘sharding’@‘%’;

Revoke global
authority

REVOKE DIST privileges FROM
‘user’@‘host’;

REVOKE DIST SELECT FROM‘sharding’@‘%’;

Revoke authori‑
ties (all objects)

REVOKE DIST privileges ON . FROM
‘user’@‘host’;

REVOKE DIST SELECT ON . FROM‘sharding’@‘%’;

Revoke authority
(database level)

REVOKE DIST privileges ON
schema.* FROM‘user’@‘host’;

REVOKEDIST INSERTON sharding_db.* FROM‘sharding’
@‘%’;

Revoke authority
(table level)

REVOKE DIST privileges ON
schema.table FROM ‘user’@
‘host’;

REVOKE DIST INSERT ON sharding_db.t_order FROM
‘sharding’@‘%’;

Revoke authority
(column level)

REVOKE DIST privileges ON
schema.table FROM ‘user’@
‘host’;

REVOKEDISTSELECT (order_id), SELECT (user_id, status)
ON sharding_db.t_order FROM‘sharding’@‘%’;

View user au‑
thority

SHOWDIST GRANTS FOR‘user’@
‘host’;

SHOW DIST GRANTS FOR‘sharding’@‘%’;

Refresh author‑
ity

FLUSH DIST PRIVILEGES; FLUSH DIST PRIVILEGES;

Note: ‑ The syntax of“authorize / revoke authorization”for users and roles is the same. Replace‘user’@‘host’
with role; ‑ REVOKE DIST ALL will revoke all roles assigned to the user at the same time.
Configuration of Authority
It is used to configure the initial user logging in to the computing node and the data authorization of the storage node.

293



Beijing SphereEx Technology Co., Ltd.

Example

authority:
users:
‑ user: root@%
password: root

privilege:
type: SphereEx:PERMITTED

User Management

Initial User Management

The initial user is specified by the administrator before the DBPlusEngine starts.

Ordinary User Management

Create User

The CREATE DIST USER statement is used to create a new user with the specified password.
In DBPlusEngine, a user is a combination of a user name and the host to which the user name is connected.
Example: ‑ Create a user named‘sharding’, with a password of‘123456’,‘%’indicates that login to the host is
not restricted.
CREATE DISTUSER 'sharding'@'%' IDENTIFIED BY '123456';

■ Create a user who can only log in at 127.0.0.1.
CREATE DISTUSER 'sharding'@'127.0.0.1' IDENTIFIED BY '123456';

Modify User

The ALTER DIST USER statement is used to modify existing users. Currently, it only supports passwordmodification.
Example: ‑ Change the password of the user of‘sharding’@‘%’to‘sharding’.
ALTER DISTUSER 'sharding'@'%' IDENTIFIED BY 'sharding';

Delete User

The DROP DIST USER statement is used to delete a user.
Example: ‑ Remove the user of‘sharding’@‘%’from the system.
DROP DISTUSER 'sharding'@'%';

294



Beijing SphereEx Technology Co., Ltd.

View User List

The SHOW DIST USERS statement is used to view the user list.
Example: ‑ View all users, only the authorized host and user name are queried, and the user password is not displayed.
SHOW DIST USERS;

Role Management

Create Role

The CREATE DIST ROLE statement is used to create the role.
Example: ‑ Create a role named‘dml_only’.
CREATE DIST ROLE dml_only;

Delete Role

The DROP DIST ROLE statement is used to delete a role.
Example: ‑ Remove user‘dml_only’from the system.
DROP DIST ROLE dml_only;

View Role List

The SHOW DIST ROLES statement is used to view the role list.
Example: ‑ View all role names that have been created.
SHOW DIST ROLES;

Authority Management

Authorize

The GRANT DIST privileges statement is used to authorize a user or role.
Example: ‑ Grant global SELECT authority to user‘sharding’@‘%’.
GRANT DIST SELECT TO 'sharding'@'%';

■ Grant SELECT and INSERT authority of logical databse sharding_db to user‘sharding’@‘%’.
GRANT DIST SELECT, INSERT ON sharding_db.* TO 'sharding'@'%';

■ Grant SELECT and INSERT authority of logical table sharding_db.t_order to user‘sharding’@‘%’.
GRANT DIST SELECT, INSERT ON sharding_db.t_order TO 'sharding'@'%';

■ Grant the specified SELECT authority in logical table sharding_db.t_order to user‘sharding’@‘%’.
GRANT DIST SELECT (order_id), SELECT (user_id, status)ON sharding_db.t_order TO 'sharding'@'%';

■ Assign Global SELECT, INSERT, UPDATE and DELETE authority to role dml_only.

295



Beijing SphereEx Technology Co., Ltd.

GRANT DIST INSERT,SELECT,UPDATE,DELETE TO dml_only;

■ Grant role dml_only to user‘sharding’@‘%’.
GRANT DIST dml_only TO 'sharding'@'%';

Revocation of Authorization

The REVOKE DIST privileges statement is used to revoke authorization of a user or role.
Example: ‑ Revoke Global Select authorization for user‘sharding’@‘%’.
REVOKE DIST SELECT FROM 'sharding'@'%';

■ Revoke SELECT and INSERT authority of user‘sharding’@‘%’in logical database sharding_db.
REVOKE DIST SELECT, INSERT ON sharding_db.* FROM 'sharding'@'%';

■ Revoke SELECT and INSERT authority of user‘sharding’@‘%’in logical table sharding_db.
REVOKE DIST SELECT, INSERT ON sharding_db.t_order FROM 'sharding'@'%';

■ Revoke SELECT authority of user‘sharding’@‘%’in logical sharding_db.t_order.
REVOKE DIST SELECT (order_id), SELECT (user_id, status)ON sharding_db.t_order FROM 'sharding'@'%';

■ Revoke SELECT, INSERT, UPDATE and DELETE authority of role dml_only.
REVOKE DIST INSERT,SELECT,UPDATE,DELETE FROM dml_only;

■ Revoke the role dml_only of user‘sharding’@‘%’.
REVOKE DIST dml_only FROM 'sharding'@'%';

Related Reference

Authority Control

7.2.6 DistSQL Authority Control

Authority Classification

DistSQL authority classification is similar to standard database authority, they also have global authority, database
level object authority and table level object authority. At present, DistSQL does not have column level operations, so
there are no column level authority in the authority classification.
DistSQLauthority hasmore typesof authorization items than standarddatabaseauthority. DistSQLauthorization item
is composed of operation + operation object, and its combination method is as follows.

296



Beijing SphereEx Technology Co., Ltd.

CREATE ALTER DROP SHOW

RESOURCE ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  
SHARDING ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  
READWRITE_SPLITTING ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  
ENCRYPT ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  
DB_DISCOVERY ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  
SHADOW ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  
SINGLE_TABLE ✓✓✓  ✓✓✓  ✓✓✓  ✓✓✓  

In addition to the authorization items shown in the above table, RDL, RQL and RAL syntax types are also provided as
authorization items.

Global Authority

Global authority refers to that the authorization obtained by the user does not distinguish the target object, and the
user can perform corresponding operations on any logical database and logical table.
For example, the following instruction grants the global SHOW SHARDING authority to user‘sharding’@‘%’, and
the user can perform SHOW operation on sharding rules in any logical database.
GRANT DIST SHOW SHARDING TO 'sharding'@'%';

In addition, because there are many DistSQL authorization items, when granting multiple authorization items at a
time, you can use the syntax type as the authorization item. For example, the following instruction grants SHOW of
all operations object global to user‘sharding’@‘%’, the user can perform the SHOW operation on any operation
object in any logical database.
GRANT DIST RQL SHARDING TO 'sharding'@'%';

Object Authority

Object Authority means that the granted authority is limited by the scope of action, and users cannot perform corre‑
sponding operations outside the scope of authorization.
The scope of object authority can be all logical databases, or you can specify single or multiple logical databases and
tables in databases.
For example, the following instruction grants sharding rule t_order creation and modification in logical database
sharding_db to user‘sharding’@‘%’. After that, the user can create andmodify rule sharding_db.t_order. However,
the user cannot operate any other rules in sharding_db.
GRANT DIST CREATE SHARDING, ALTER SHARDINGON sharding_db.t_order TO 'sharding'@'%';

297



Beijing SphereEx Technology Co., Ltd.

DistSQL List

Description Syntax Sample
Create user CREATE DIST USER‘user’@‘host’

IDENTIFIED BY‘password’;
CREATE DIST USER‘sharding’@‘%’IDENTIFIED BY
‘123456’;

Modify user Pass‑
word

ALTER DIST USER ‘user’@‘host’
IDENTIFIED BY‘password’;

ALTER DIST USER‘sharding’@‘%’IDENTIFIED BY
‘sharding’;

Delete user DROP DIST USER‘user’@‘host’; DROP DIST USER‘sharding’@‘%’;
Create role CREATE DIST ROLE role; CREATE DIST ROLE admin;
Delete role DROP DIST ROLE role; DROP DIST ROLE admin;
Grant role to user GRANTDIST role TO‘user’@‘host’

;
GRANT DIST admin TO‘sharding’@‘%’;

Cancel user role REVOKE DIST role FROM ‘user’@
‘host’;

REVOKE DIST admin FROM‘sharding’@‘%’;

Grant global au‑
thority

GRANT DIST privileges TO‘user’@
‘host’;

GRANT DIST CREATE SHARDING TO‘sharding’@‘%’
;

Grant authority
(all objects)

GRANT DIST privileges ON . to‘user’
@‘host’;

GRANT DIST CREATE SHARDING, SHOW SHARDING ON
. TO‘sharding’@‘%’;

Grant authority
(database level)

GRANT DIST privileges ON schema.*
to‘user’@‘host’;

GRANT DIST CREATE SHARDING, SHOW SHARDING ON
sharding_db.* TO‘sharding’@‘%’;

Grant authority
(table level)

GRANT DIST privileges ON
schema.table to‘user’@‘host’;

GRANT DIST CREATE SHARDING, SHOW SHARDING ON
sharding_db.t_order TO‘sharding’@‘%’;

Cancel global au‑
thority

REVOKEDIST privileges FROM‘user’
@‘host’;

REVOKE DIST SHOW SHARDING FROM ‘sharding’@
‘%’;

Cancel authority
(all objects)

REVOKE DIST privileges ON . FROM
‘user’@‘host’;

REVOKE DIST SHOW SHARDING ON . FROM‘sharding’
@‘%’;

Cancel authority
(database level)

REVOKE DIST privileges ON schema.*
FROM‘user’@‘host’;

REVOKE DIST CREATE SHARDING ON sharding_db.*
FROM‘sharding’@‘%’;

Cancel authority
(table level)

REVOKE DIST privileges ON
schema.table FROM ‘user’@
‘host’;

REVOKE DIST CREATE SHARDING ON shard‑
ing_db.t_order FROM‘sharding’@‘%’;

View user author‑
ity

SHOW DIST GRANTS FOR ‘user’@
‘host’;

SHOW DIST GRANTS FOR‘sharding’@‘%’;

Refresh autho‑
rization

FLUSH DIST PRIVILEGES; FLUSH DIST PRIVILEGES;

The list of DistSQL using syntax type as authorization item is as follows:

Description Syntax Sample
Grant global author‑
ity

GRANT DIST privileges TO‘user’@‘host’
;

GRANT DIST RAL, RDL TO‘sharding’@‘%’
;

Cancel global au‑
thority

REVOKE DIST privileges FROM ‘user’@
‘host’;

REVOKE DIST RAL, RDL FROM‘sharding’@
‘%’;

Note: ‑ The syntax of“authorize / revoke authorization”for users and roles is the same. Replace‘user’@‘host’as
role; ‑ REVOKE DIST ALL will revoke all roles assigned to the user at the same time.

298



Beijing SphereEx Technology Co., Ltd.

7.2.7 Slow Query Log

Background

The slow query log feature is used to log SQL statements that takes longer to execute, which is easy for DBAs and
developers to identify potentially problematic SQL statements and is an important reference for database and SQL
management.

Parameters

■ slow_query_log: Whether to enable the slow query log function, the default value is true.
■ long_query_time: The slow query time threshold at which SQL statements that take longer to execute are

recorded in the slow query log. The configuration unit is milliseconds (ms) and the default value is 5000.

Requirements

The slow query log feature is based on Agent technology and is only available for ShardingSphere‑Proxy scenarios
where Agent is enabled.

Sample

Because the slow query log is agent‑based, the following configuration is located in agent.yaml:
plugins:
Logging:
props:
# Whether to enable general query log.
# general_query_log: true
# Whether to enable slow query log.
slow_query_log: true
# Long query threshold, in milliseconds.
long_query_time: 5000

Where slow_query_log and long_query_time are configured with default values, meaning: 1. Enable slow query logs.
2. When SQL execution takes more than 5000 milliseconds, record slow query logs.

Slow Query Log Format

The format of the slow query log is as follows:
timestamp: {time} db: {db database user: {user} host: {host} query_time: {query time}
{sql}

■ timestamp: The time at which the log records were generated;
■ db: Database name.
■ user: The name of the user used in the current connection;
■ host: Client access address;
■ query_time: SQL execution time, the unit is ms;
■ sql: An SQL statement that is sent by the client when a slow query occurs.

For Example:

299



Beijing SphereEx Technology Co., Ltd.

timestamp: 2022‑07‑01 00:00:00.000 db: sharding_db user: root host: 127.0.0.1 query_time: 159
CREATE TABLE `t_order` (
`order_id` bigint(20)NOT NULL AUTO_INCREMENT,
`user_id` int(11)NOT NULL,
`status` varchar(50) COLLATE utf8mb4_bin DEFAULT NULL,
PRIMARY KEY (`order_id`)
)

Related References

Observability

7.2.8 Full Audit Logs

Background

Full audit log means that once this function is enabled, the system will record all executed SQL statements, and in‑
clude the database, user, access address, access time and other information corresponding to the statement. This is
convenient for enterprises to conduct audit operations.

Parameters

■ general_query_log: The full audit log has only one parameter. When the value is true, the full log is enabled, and
when the value is false, the function is disabled.

Requirements

Similar to the“slow query log”function, the implementation of the full audit log is also based on the agent, so this
function is only applicable to the scenario of ShardingSphere‑Proxy and the agent is enabled.

Sample

The full audit log is an Agent‑based feature, so the following configuration is located in agent.yaml:
plugins:
Logging:
props:
# Whether to enable general query log.
general_query_log: false
# Whether to enable slow query log.
#slow_query_log: true
# Long query threshold, in milliseconds.
#long_query_time: 5000

Among them, general_query_log is configured as false, indicating that full logs are not enabled.
When you need to enable full logs, configure general_query_log to true and restart ShardingSphere‑Proxy.

300



Beijing SphereEx Technology Co., Ltd.

Full Audit Log Format

The full audit log format is as follows:
db: {database} user: {user} host: {host} query_time: {query time}
{sql}

■ db: Database name;
■ user: Username used in the current connection;
■ host: Client access address;
■ query_time: SQL execution time, the unit is ms;
■ sql: The SQL statement sent by the client.

For example:
[INFO ] 2022‑07‑01 00:00:00.000 [ShardingSphere‑Command‑0] GENERAL‑QUERY ‑ db: sharding_db user: root host: 127.0.0.1
query_time: 145
CREATE TABLE `t_order` (
`order_id` bigint(20)NOT NULL AUTO_INCREMENT,
`user_id` int(11)NOT NULL,
`status` varchar(50) COLLATE utf8mb4_bin DEFAULT NULL,
PRIMARY KEY (`order_id`)
)

Related References

Observability

7.2.9 Scaling

Introduction

ShardingSphere‑Scaling is a common solution for resharding data in Apache ShardingSphere since version 4.1.0, the
current state is Experimental version.

Build & Deployment

1. Install DBPlusEngine‑Proxy.
2. Modify the configuration file conf/server.yaml. For for details please see Mode Configuration.

Currently modemust be‘Cluster’and the corresponding registry center needs to be activated in advance.
For example:
mode:
type: Cluster
repository:
type: ZooKeeper
props:
namespace: governance_ds
server‑lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

overwrite: false

301



Beijing SphereEx Technology Co., Ltd.

3. Introduce the DBPlusEngine‑Driver driver.
If the backend connects to the following database, download the appropriate DBPlusEngine‑Driver driver jar package
and put it in the‘${shardingsphere‑proxy}/lib’directory.

DatabaseDriver driver Reference
MySQL `mysql‑co nnector‑java‑5.1.47.jar < https://repo1.maven.org/m aven2/mysql/mysql‑

connect or‑java/5.1.47/mysql‑conn ector‑java‑5.1.47.jar>`__
Connec‑
tor/J Ver‑
sions

open‑
Gauss

opengauss‑jd bc‑2.0.1‑compatibility.ja r

4. Start DBPlusEngine‑Proxy.
sh bin/start.sh

Check the Proxy logs or log in to the Proxy using the database client to confirm that the Proxy started successfully.
5. Configure RULE on demand.

5.1. Query configuration.
SHOW RESHARDING RULE;

The default configuration is as follows:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| read | write | stream_channel |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| {"workerThread":40,"batchSize":1000,"shardingSize":10000000} | {"workerThread":40,"batchSize":1000} | {"type":"MEMORY",
"props":{"block‑queue‑size":10000}} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

5.2. Alter configuration (Optional).
Since the migration rule has default values, there is no need to create it, only the ALTER statement is provided.
A completely configured DistSQL is as follows.
ALTER RESHARDING RULE (
READ(
WORKER_THREAD=40,
BATCH_SIZE=1000,
SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
),
WRITE(
WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))
),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block‑queue‑size'='10000')))
);

Configuration item description:
ALTER RESHARDING RULE (
READ( ‑‑ Data reading configuration. If it is not configured, part of the parameters will take effect by default.
WORKER_THREAD=40, ‑‑ Obtain the thread pool size of all the data from the source side. If it is not configured, the default value
is used.
BATCH_SIZE=1000, ‑‑ The maximum number of records returned by a query operation. If it is not configured, the default value is
used.
SHARDING_SIZE=10000000, ‑‑ Sharding size of all the data. If it is not configured, the default value is used.
RATE_LIMITER ( ‑‑ Traffic limit algorithm. If it is not configured, traffic is not limited.
TYPE( ‑‑ Algorithm type. Option: QPS

302

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/2.0.1-compatibility/opengauss-jdbc-2.0.1-compatibility.jar


Beijing SphereEx Technology Co., Ltd.

NAME='QPS',
PROPERTIES( ‑‑ Algorithm property
'qps'='500'
)))
),
WRITE( ‑‑ Data writing configuration. If it is not configured, part of the parameters will take effect by default.
WORKER_THREAD=40, ‑‑ The size of the thread pool on which data is written into the target side. If it is not configured, the
default value is used.
BATCH_SIZE=1000, ‑‑ The maximum number of records for a batch write operation. If it is not configured, the default value is
used.
RATE_LIMITER ( ‑‑ Traffic limit algorithm. If it is not configured, traffic is not limited.
TYPE( ‑‑ Algorithm type. Option: TPS
NAME='TPS',
PROPERTIES( ‑‑ Algorithm property.
'tps'='2000'
)))
),
STREAM_CHANNEL ( ‑‑ Data channel. It connects producers and consumers, used for reading and writing procedures. If it is not
configured, the MEMORY type is used by default.
TYPE( ‑‑ Algorithm type. Option: MEMORY
NAME='MEMORY',
PROPERTIES( ‑‑ Algorithm property
'block‑queue‑size'='10000' ‑‑ Property: blocking queue size.
)))
);

DistSQL sample: configure READ for traffic limit.
ALTER RESHARDING RULE (
READ(
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
)
);

Configure data reading for traffic limit. Other configurations use default values.
5.3. Restore configuration.
ALTER RESHARDING RULE (
READ(
WORKER_THREAD=40,
BATCH_SIZE=1000,
SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
),
WRITE(
WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))
),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block‑queue‑size'='10000')))
);

303



Beijing SphereEx Technology Co., Ltd.

Manual

MySQL User Manual

Environment

MySQL 5.1.15 ~ 8.0.x.

Privileges

1. Start binlog.
MySQL 5.7 my.cnf configuration example:
[mysqld]
server‑id=1
log‑bin=mysql‑bin
binlog‑format=row
binlog‑row‑image=full
max_connections=600

Run the following command to confirm that binlog is enabled:
show variables like '%log_bin%';
show variables like '%binlog%';

If you receive the following result, it means that the binlog is enabled:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Variable_name | Value |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| log_bin | ON |
| binlog_format | ROW |
| binlog_row_image | FULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

2. Grant the MySQL account Replication permission.
Execute the following command to see if the user has migration permissions:
SHOW GRANTS FOR 'user';

Example results:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|Grants for ${username}@${host} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO ${username}@${host} |
|....... |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

304



Beijing SphereEx Technology Co., Ltd.

Complete Procedure Example

Prerequisite

1. Create a database in MySQL.
Example:
DROP DATABASE IF EXISTS resharding_ds_0;
CREATE DATABASE resharding_ds_0 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS resharding_ds_1;
CREATE DATABASE resharding_ds_1 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS resharding_ds_2;
CREATE DATABASE resharding_ds_2 DEFAULT CHARSET utf8;

Procedure

1. Create a new logical database in proxy, configure resources and rules, create tables and initialize some data.
CREATE DATABASE sharding_db;

USE sharding_db;

REGISTER STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/resharding_ds_0?useServerPrepStmts=true&serverTimezone=UTC&useSSL=false&

characterEncoding=utf‑8",
USER="root",
PASSWORD="root"

), ds_1 (
URL="jdbc:mysql://127.0.0.1:3306/resharding_ds_1?useServerPrepStmts=true&serverTimezone=UTC&useSSL=false&

characterEncoding=utf‑8",
USER="root",
PASSWORD="root"

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

CREATE TABLE t_order (order_id INTNOT NULL, user_id INTNOT NULL, status VARCHAR(45)NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Add a new data source in the proxy.
Example:
REGISTER STORAGE UNIT ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/resharding_ds_2?useServerPrepStmts=true&serverTimezone=UTC&useSSL=false&

characterEncoding=utf‑8",
USER="root",
PASSWORD="root"

);

3. Start scaling‑in and scaling‑out.
Added ds_2 data source, example:

305



Beijing SphereEx Technology Co., Ltd.

RESHARD TABLE t_order BY(
STORAGE_UNITS(ds_0, ds_1, ds_2),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))

);

4. View the list of scaling‑in and scaling‑out operations.
SHOW RESHARDING LIST;

Example results:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| id | tables | sharding_total_count | active | create_time | stop_time |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| j51017f973ac82cb1edea4f5238a258c25e89 | t_order | 2 | true | 2022‑10‑25 10:10:58 |NULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

5. View the details of scaling‑in and scaling‑out.
SHOW RESHARDING STATUS 'j51017f973ac82cb1edea4f5238a258c25e89';

Example results:
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+
| item | data_source | status | active | processed_records_count | inventory_finished_percentage | remaining_seconds |
incremental_idle_seconds | error_message |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 3 | 100 | 0 | 92 | |
| 1 | ds_1 | EXECUTE_INCREMENTAL_TASK | true | 3 | 100 | 0 | 92 | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+

6. Execute write stop (Optional).
This statement will intercept the addition, deletion, modification and partial DistSQL, which is optional.
STOP RESHARDING SOURCEWRITING 'j51017f973ac82cb1edea4f5238a258c25e89';

7. Perform data consistency verification.
CHECK RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89' BY TYPE (NAME='CRC32_MATCH');

Data consistency verification algorithm type comes from:
SHOW RESHARDING CHECK ALGORITHMS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| type | supported_database_types | description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| CRC32_MATCH | MySQL |Match CRC32 of records. |
| DATA_MATCH | SQL92,MySQL,MariaDB,PostgreSQL,openGauss,Oracle,SQLServer,H2 |Match raw data of records. |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

When data encryption is enabled, you need to use DATA_MATCH.
Query data consistency verification progress:
SHOW RESHARDING CHECK STATUS 'j51017f973ac82cb1edea4f5238a258c25e89';

Example results:

306



Beijing SphereEx Technology Co., Ltd.

+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| tables | result | finished_percentage | remaining_seconds | check_begin_time | check_end_time | duration_seconds |
error_message |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | true | 100 | 0 | 2022‑10‑25 10:13:33.220 | 2022‑10‑25 10:13:35.338 | 2 | |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

8. Switch metadata.
APPLY RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

Preview the rule after it takes effect.
PREVIEW SELECT * FROM t_order;

Example results:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| data_source_name | actual_sql |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ds_0 | select * from v1_t_order_0UNION ALL select * from v1_t_order_3 |
| ds_1 | select * from v1_t_order_1UNION ALL select * from v1_t_order_4 |
| ds_2 | select * from v1_t_order_2UNION ALL select * from v1_t_order_5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9. Recover write stop (optional).
If the write was stopped before, recovery is required.
RESTORE RESHARDING SOURCEWRITING 'j51017f973ac82cb1edea4f5238a258c25e89';

10. Complete jobs of scaling‑in and scaling‑out.
Example:
COMMIT RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

PostgreSQL User Manual

Environment

PostgreSQL 9.4+

Privileges

1. Start test_decoding.
2. Adjust the WAL configuration.

postgresql.conf configuration example:
wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
max_connections = 600

For details please see Write Ahead Log and Replication.
3. Configuring PostgreSQL allows the proxy to have replication permissions.

pg_hba.conf configuration example:

307

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html


Beijing SphereEx Technology Co., Ltd.

host replication repl_acct 0.0.0.0/0 md5

For details please see The pg_hba.conf File.

Complete Procedure Example

Prerequisite

1. Create a database in PostgreSQL.
Example:
DROP DATABASE IF EXISTS resharding_ds_0;
CREATE DATABASE resharding_ds_0;

DROP DATABASE IF EXISTS resharding_ds_1;
CREATE DATABASE resharding_ds_1;

DROP DATABASE IF EXISTS resharding_ds_2;
CREATE DATABASE resharding_ds_2;

Procedure

1. Create a new logical database in proxy, configure resources and rules, create tables and initialize some data.
CREATE DATABASE sharding_db;

USE sharding_db;

REGISTER STORAGE UNIT ds_0 (
URL="jdbc:postgresql://127.0.0.1:5432/resharding_ds_0",
USER="root",
PASSWORD="root"

), ds_1 (
URL="jdbc:postgresql://127.0.0.1:5432/resharding_ds_1",
USER="root",
PASSWORD="root"

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

CREATE TABLE t_order (order_id INTNOT NULL, user_id INTNOT NULL, status VARCHAR(45)NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Add a new data source in the proxy.
Example:
REGISTER STORAGE UNIT ds_2 (
URL="jdbc:postgresql://127.0.0.1:5432/resharding_ds_2",
USER="root",
PASSWORD="root"

);

308

https://www.postgresql.org/docs/9.6/auth-pg-hba-conf.html


Beijing SphereEx Technology Co., Ltd.

3. Start scaling‑in and scaling‑out.
Added data source ds_2, example:
RESHARD TABLE t_order BY(
STORAGE_UNITS(ds_0, ds_1, ds_2),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))

);

4. View the list of scaling‑in and scaling‑out operations.
SHOW RESHARDING LIST;

Example results:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| id | tables | sharding_total_count | active | create_time | stop_time |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| j51017f973ac82cb1edea4f5238a258c25e89 | t_order | 2 | true | 2022‑10‑25 10:10:58 |NULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

5. View the details of scaling‑in and scaling‑out.
SHOW RESHARDING STATUS 'j51017f973ac82cb1edea4f5238a258c25e89';

Example results:
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+
| item | data_source | status | active | processed_records_count | inventory_finished_percentage | remaining_seconds |
incremental_idle_seconds | error_message |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 3 | 100 | 0 | 92 | |
| 1 | ds_1 | EXECUTE_INCREMENTAL_TASK | true | 3 | 100 | 0 | 92 | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+

6. Execute write stop (optional).
This statement will intercept the addition, deletion, modification and partial DistSQL, which is optional.
STOP RESHARDING SOURCEWRITING 'j51017f973ac82cb1edea4f5238a258c25e89';

7. Perform data consistency verification.
CHECK RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

Query data consistency verification progress:
SHOW RESHARDING CHECK STATUS 'j51017f973ac82cb1edea4f5238a258c25e89';

Example results:
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| tables | result | finished_percentage | remaining_seconds | check_begin_time | check_end_time | duration_seconds |
error_message |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | true | 100 | 0 | 2022‑10‑25 10:13:33.220 | 2022‑10‑25 10:13:35.338 | 2 | |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

8. Switch metadata.

309



Beijing SphereEx Technology Co., Ltd.

APPLY RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

Preview the rule after it takes effect.
PREVIEW SELECT * FROM t_order;

Example results:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| data_source_name | actual_sql |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ds_0 | select * from v1_t_order_0UNION ALL select * from v1_t_order_3 |
| ds_1 | select * from v1_t_order_1UNION ALL select * from v1_t_order_4 |
| ds_2 | select * from v1_t_order_2UNION ALL select * from v1_t_order_5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9. Recover write stop (optional).
If the write was stopped before, recovery is required.
RESTORE RESHARDING SOURCEWRITING 'j51017f973ac82cb1edea4f5238a258c25e89';

10. Complete jobs of scaling‑in and scaling‑out.
Example:
COMMIT RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

openGauss User Manual

Environment

openGauss 2.0.1 ~ 3.0.0

Privileges

1. Adjust the WAL configuration.
postgresql.conf configuration example:
wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

For details please see Write Ahead Log and Replication.
2. Configuring PostgreSQL allows the proxy to have replication permissions.

pg_hba.conf configuration example:
host replication repl_acct 0.0.0.0/0 md5

For details please see Configuring Client Access Authentication and Example: Logic Replication Code.

310

https://opengauss.org/en/docs/2.0.1/docs/Developerguide/settings.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/sending-server.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/configuring-client-access-authentication.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html


Beijing SphereEx Technology Co., Ltd.

Complete Procedure Example

Prerequisite

1. Create a database in openGauss.
Example:
DROP DATABASE IF EXISTS resharding_ds_0;
CREATE DATABASE resharding_ds_0;

DROP DATABASE IF EXISTS resharding_ds_1;
CREATE DATABASE resharding_ds_1;

DROP DATABASE IF EXISTS resharding_ds_2;
CREATE DATABASE resharding_ds_2;

Procedure

1. Create a new logical database in proxy, configure resources and rules, create tables and initialize some data.
CREATE DATABASE sharding_db;

USE sharding_db;

REGISTER STORAGE UNIT ds_0 (
URL="jdbc:opengauss://127.0.0.1:5432/resharding_ds_0",
USER="root",
PASSWORD="root"

), ds_1 (
URL="jdbc:opengauss://127.0.0.1:5432/resharding_ds_1",
USER="root",
PASSWORD="root"

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

CREATE TABLE t_order (order_id INTNOT NULL, user_id INTNOT NULL, status VARCHAR(45)NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Add a new data source in the proxy
Example:
REGISTER STORAGE UNIT ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/resharding_ds_2",
USER="root",
PASSWORD="root"

);

3. Start scaling‑in and scaling‑out.
Added ds_2 data source, example:
RESHARD TABLE t_order BY(
STORAGE_UNITS(ds_0, ds_1, ds_2),

311



Beijing SphereEx Technology Co., Ltd.

SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))

);

4. View the list of scaling‑in and scaling‑out operations.
SHOW RESHARDING LIST;

Example results:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| id | tables | sharding_total_count | active | create_time | stop_time |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| j51017f973ac82cb1edea4f5238a258c25e89 | t_order | 2 | true | 2022‑10‑25 10:10:58 |NULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

5. View the details of scaling‑in and scaling‑out.
SHOW RESHARDING STATUS 'j51017f973ac82cb1edea4f5238a258c25e89';

Example results:
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+
| item | data_source | status | active | processed_records_count | inventory_finished_percentage | remaining_seconds |
incremental_idle_seconds | error_message |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 3 | 100 | 0 | 92 | |
| 1 | ds_1 | EXECUTE_INCREMENTAL_TASK | true | 3 | 100 | 0 | 92 | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑
‑‑‑‑‑‑‑‑‑‑‑+

6. Execute write stop (optional)
This statement will intercept the addition, deletion, modification and partial DistSQL, which is optional.
STOP RESHARDING SOURCEWRITING 'j51017f973ac82cb1edea4f5238a258c25e89';

7. Perform data consistency verification.
CHECK RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

Query data consistency verification progress:
SHOW RESHARDING CHECK STATUS 'j51017f973ac82cb1edea4f5238a258c25e89';

Example results:
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| tables | result | finished_percentage | remaining_seconds | check_begin_time | check_end_time | duration_seconds |
error_message |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | true | 100 | 0 | 2022‑10‑25 10:13:33.220 | 2022‑10‑25 10:13:35.338 | 2 | |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

8. Switch metadata.
APPLY RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

Preview the rule after it takes effect.

312



Beijing SphereEx Technology Co., Ltd.

PREVIEW SELECT * FROM t_order;

Example results:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| data_source_name | actual_sql |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ds_0 | select * from v1_t_order_0UNION ALL select * from v1_t_order_3 |
| ds_1 | select * from v1_t_order_1UNION ALL select * from v1_t_order_4 |
| ds_2 | select * from v1_t_order_2UNION ALL select * from v1_t_order_5 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9. Recover write stop (optional).
If the write was stopped before, recovery is required.
RESTORE RESHARDING SOURCEWRITING 'j51017f973ac82cb1edea4f5238a258c25e89';

10. Complete scaling‑in and scaling‑out.
Example:
COMMIT RESHARDING 'j51017f973ac82cb1edea4f5238a258c25e89';

7.2.10 Auto Scaling on Cloud (HPA)

Parameters

Name Description Default
Value

a utomaticScal ing.
enable

SphereEx‑DBPlusEngine‑Proxy whether the cluster starts auto scaling false

automatic Scaling.scal
eUpWindows

SphereEx‑DBPlusEngine‑Proxy auto scaling‑out stable window 30

` automaticSc al‑
ing.scaleD ownWin‑
dows`

SphereEx‑DBPlusEngine‑Proxy auto scaling‑in stable window 30

a utomaticScal ing.
target

SphereEx‑DBPlusEngine‑Proxy threshold value of auto scaling is percentage.
Note: at this stage, only CPU is supported for scaling.

70

automa ticScaling.m ax‑
Instance

SphereEx‑DBPlusEngine‑Proxy maximum number of scaling‑out copies 4

automa ticScaling.m
inInstance

SphereEx‑DBPlusEngine‑Proxy minimum number of startup copies, and the
scaling‑in size will not be less than this number of copies

1

Notes

When you turn on the automaticScaling function of SphereEx‑DBPlusEngine, HPA will take over the number of copies
of SphereEx‑DBPlusEngine. Your SphereEx‑DBPlusEngine may scale‑in, and the application will flash.
When the automaticScaling function of SphereEx‑DBPlusEngine is enabled, the corresponding HPA will be deleted.

313



Beijing SphereEx Technology Co., Ltd.

Procedure

■ After modifying values.yaml according to the following configuration, execute helm install to create a new
SphereEx‑DBPlusEngine cluster.

■ Or use helm upgrade to update the existing SphereEx‑DBPlusEngine cluster configuration.

Sample

If you want to turn on the auto scaling function of SphereEx‑DBPlusEngine in SphereEx‑Operator, you need to open
the following configuration in the values.yaml of SphereEx‑DBPlusEngine‑cluster charts.
automaticScaling:
enable: true
scaleUpWindows: 30
scaleDownWindows: 30
target: 20
maxInstance: 4
minInstance: 2

Related References

■ Feature Description of Auto Scaling on Cloud (HPA)
■ Use Operator

7.2.11 Data Migration

Introduction

DBPlusEngine provides solution of migrating data since 4.1.0.

Build

Background

For systems running on a single database that urgently need to securely and simply migrate data to a horizontally
sharded database.

Prerequisites

■ Proxy is developed in JAVA, and JDK version 1.8 or later is recommended.
■ Data migration adopts the cluster mode, and ZooKeeper is currently supported as the registry.

314



Beijing SphereEx Technology Co., Ltd.

Procedure

1. Run the following command to compile the ShardingSphere‑Proxy binary package:
git clone ‑‑depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install ‑Dmaven.javadoc.skip=true ‑Dcheckstyle.skip=true ‑Drat.skip=true ‑Djacoco.skip=true ‑DskipITs ‑DskipTests ‑
Prelease

Release package：‑ /shardingsphere‑distribution/shardingsphere‑proxy‑distribution/target/apache‑shardingsphere‑
${latest.release.version}‑shardingsphere‑proxy‑bin.tar.gz
Or you can get the installation package through the Download Page

2. Decompress the proxy release package andmodify the configuration file conf/config‑sharding.yaml. Please refer
to proxy startup guide for details.

3. Modify the configuration file conf/server.yaml. Please refer to mode configuration for details.
Currently, modemust be Cluster, and the corresponding registry must be started in advance.
Configuration sample:
mode:
type: Cluster
repository:
type: ZooKeeper
props:
namespace: governance_ds
server‑lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

overwrite: false

4. Introduce the JDBC driver.
Proxy includes the JDBC driver of PostgreSQL.
If the backend is connected to the following databases, download the corresponding JDBC driver jar package and put
it into the ${shardingsphere‑proxy}/ext‑lib directory.

DatabaseJDBC Driver Reference
MySQL `mysql‑co nnector‑java‑5.1.47.jar < https://repo1.maven.org/m aven2/mysql/mysql‑

connect or‑java/5.1.47/mysql‑conn ector‑java‑5.1.47.jar>`__
Connec‑
tor/J Ver‑
sions

open‑
Gauss

opengauss‑jdbc‑3.0.0 .jar

If you are migrating to a heterogeneous database, then you could use more types of database, e.g. Oracle. Introduce
JDBC driver as above too.

5. Start ShardingSphere‑Proxy:
sh bin/start.sh

6. View the proxy log logs/stdout.log. If you see the following statements:
[INFO ] [main] o.a.s.p.frontend.ShardingSphereProxy ‑ ShardingSphere‑Proxy start success

The startup will have been successful.
7. Configure andmigrate on demand.

7.1. Query configuration.

315

https://shardingsphere.apache.org/document/current/en/downloads/
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/3.0.0/opengauss-jdbc-3.0.0.jar


Beijing SphereEx Technology Co., Ltd.

SHOWMIGRATION RULE;

The default configuration is as follows.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| read | write | stream_channel |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| {"workerThread":40,"batchSize":1000,"shardingSize":10000000} | {"workerThread":40,"batchSize":1000} | {"type":"MEMORY",
"props":{"block‑queue‑size":10000}} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7.2. Alter configuration (Optional).
Since the migration rule has default values, there is no need to create it, only the ALTER statement is provided.
A completely configured DistSQL is as follows.
ALTERMIGRATION RULE (
READ(
WORKER_THREAD=40,
BATCH_SIZE=1000,
SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
),
WRITE(
WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))
),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block‑queue‑size'='10000')))
);

Configuration item description:
ALTERMIGRATION RULE (
READ( ‑‑ Data reading configuration. If it is not configured, part of the parameters will take effect by default.
WORKER_THREAD=40, ‑‑ Obtain the thread pool size of all the data from the source side. If it is not configured, the default value
is used.
BATCH_SIZE=1000, ‑‑ The maximum number of records returned by a query operation. If it is not configured, the default value is
used.
SHARDING_SIZE=10000000, ‑‑ Sharding size of all the data. If it is not configured, the default value is used.
RATE_LIMITER ( ‑‑ Traffic limit algorithm. If it is not configured, traffic is not limited.
TYPE( ‑‑ Algorithm type. Option: QPS
NAME='QPS',
PROPERTIES( ‑‑ Algorithm property
'qps'='500'
)))
),
WRITE( ‑‑ Data writing configuration. If it is not configured, part of the parameters will take effect by default.
WORKER_THREAD=40, ‑‑ The size of the thread pool on which data is written into the target side. If it is not configured, the
default value is used.
BATCH_SIZE=1000, ‑‑ The maximum number of records for a batch write operation. If it is not configured, the default value is
used.
RATE_LIMITER ( ‑‑ Traffic limit algorithm. If it is not configured, traffic is not limited.
TYPE( ‑‑ Algorithm type. Option: TPS
NAME='TPS',
PROPERTIES( ‑‑ Algorithm property.
'tps'='2000'
)))
),
STREAM_CHANNEL ( ‑‑ Data channel. It connects producers and consumers, used for reading and writing procedures. If it is not
configured, the MEMORY type is used by default.
TYPE( ‑‑ Algorithm type. Option: MEMORY
NAME='MEMORY',
PROPERTIES( ‑‑ Algorithm property

316



Beijing SphereEx Technology Co., Ltd.

'block‑queue‑size'='10000' ‑‑ Property: blocking queue size.
)))
);

DistSQL sample: configure READ for traffic limit.
ALTERMIGRATION RULE (
READ(
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
)
);

Configure data reading for traffic limit. Other configurations use default values.
7.3. Restore configuration.
To restore the default configuration, also through the ALTER statement.
ALTERMIGRATION RULE (
READ(
WORKER_THREAD=40,
BATCH_SIZE=1000,
SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
),
WRITE(
WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))
),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block‑queue‑size'='10000')))
);

User Guide

MySQL User Guide

Environment

Supported MySQL versions: 5.1.15 to 8.0.x.

Authority Required

1. Enable binlog.
MySQL 5.7 my.cnf configuration sample:
[mysqld]
server‑id=1
log‑bin=mysql‑bin
binlog‑format=row
binlog‑row‑image=full
max_connections=600

Run the following command and check whether binlog is enabled.
show variables like '%log_bin%';
show variables like '%binlog%';

If the following information is displayed, it means binlog is enabled.

317



Beijing SphereEx Technology Co., Ltd.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Variable_name | Value |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| log_bin | ON |
| binlog_format | ROW |
| binlog_row_image | FULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

2. Grant Replication‑related permissions for MySQL account.
Run the following command to check whether the user has migration permission.
SHOW GRANTS FOR 'user';

Result example:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|Grants for ${username}@${host} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO ${username}@${host} |
|....... |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

Complete Procedure Example

Prerequisite

1. Prepare the source database, table, and data in MySQL.
Sample:
DROP DATABASE IF EXISTSmigration_ds_0;
CREATE DATABASEmigration_ds_0 DEFAULT CHARSET utf8;

USEmigration_ds_0

CREATE TABLE t_order (order_id INTNOT NULL, user_id INTNOT NULL, status VARCHAR(45)NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in MySQL.
Sample:
DROP DATABASE IF EXISTSmigration_ds_10;
CREATE DATABASEmigration_ds_10 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTSmigration_ds_11;
CREATE DATABASEmigration_ds_11 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTSmigration_ds_12;
CREATE DATABASEmigration_ds_12 DEFAULT CHARSET utf8;

318



Beijing SphereEx Technology Co., Ltd.

Procedure

1. Create a new logical database in proxy and configure resources and rules.
CREATE DATABASE sharding_db;

USE sharding_db

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_10?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_11?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_12?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‑creation statements in proxy.
2. Configure the source in proxy.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Start data migration.
MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.
MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

4. Check the data migration job list.
SHOWMIGRATION LIST;

Result example:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| id | tables | sharding_total_count | active | create_time | stop_time |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
|j01016e501b498ed1bdb2c373a2e85e2529a6| t_order | 1 | true | 2022‑08‑22 16:37:01 |NULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

5. View the data migration details.

319



Beijing SphereEx Technology Co., Ltd.

SHOWMIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| item | data_source | status | active | processed_records_count | inventory_finished_percentage | incremental_idle_
seconds | error_message |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6 | 100 | 81 | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

6. Verify data consistency.
CHECKMIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6' BY TYPE (NAME='CRC32_MATCH');
Query OK, 0 rows affected (0.09 sec)

Data consistency check algorithm list:
SHOWMIGRATION CHECK ALGORITHMS;
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| type | supported_database_types | description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| CRC32_MATCH | MySQL |Match CRC32 of records. |
| DATA_MATCH | SQL92,MySQL,MariaDB,PostgreSQL,openGauss,Oracle,SQLServer,H2 |Match raw data of records. |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

When data encryption is enabled in the target proxy, DATA_MATCH is required.
DATA_MATCH is required for heterogeneous migration.

7. Commit the job.
COMMITMIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. Refresh metadata.
REFRESH TABLEMETADATA;

Please refer to RAL Data Migration for more DistSQL.

PostgreSQL User Guide

Environment

Supported PostgreSQL versions can be 9.4 or later.

Authority Required

1. Enable test_decoding.
2. Modify WAL Configuration.

postgresql.conf configuration sample:
wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

Please refer to Write Ahead Log and Replication for more details.
3. Configure PostgreSQL and grant Proxy the replication permission.

pg_hba.conf configuration sample:

320

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html


Beijing SphereEx Technology Co., Ltd.

host replication repl_acct 0.0.0.0/0 md5

Please refer to The pg_hba.conf File for details.

Complete Procedure Example

Prerequisite

1. Prepare the source database, table, and data in PostgreSQL.
DROP DATABASE IF EXISTSmigration_ds_0;
CREATE DATABASEmigration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in PostgreSQL.
DROP DATABASE IF EXISTSmigration_ds_10;
CREATE DATABASEmigration_ds_10;

DROP DATABASE IF EXISTSmigration_ds_11;
CREATE DATABASEmigration_ds_11;

DROP DATABASE IF EXISTSmigration_ds_12;
CREATE DATABASEmigration_ds_12;

Procedure

1. Create a new logical database in proxy and configure resources and rules.
CREATE DATABASE sharding_db;

\c sharding_db

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_10",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_11",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_12",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="6")),

321

https://www.postgresql.org/docs/9.6/auth-pg-hba-conf.html


Beijing SphereEx Technology Co., Ltd.

KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‑creation statements in proxy.
2. Configure the source resources in proxy.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_0",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Enable Data Migration.
MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.
MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema.
MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.
SHOWMIGRATION LIST;

Result sample:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| id | tables | sharding_total_count | active | create_time | stop_time |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true | 2022‑10‑13 11:16:01 |NULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

5. View the data migration details.
SHOWMIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| item | data_source | status | active | processed_records_count | inventory_finished_percentage | incremental_idle_
seconds | error_message |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6 | 100 | 81 | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

6. Verify data consistency.
CHECKMIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

Query the check progress.
SHOWMIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| tables | result | finished_percentage | remaining_seconds | check_begin_time | check_end_time | duration_seconds |
error_message |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | true | 100 | 0 | 2022‑10‑13 11:18:15.171 | 2022‑10‑13 11:18:15.878 | 0 | |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7. Commit the job.

322



Beijing SphereEx Technology Co., Ltd.

COMMITMIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. Refresh metadata.
REFRESH TABLEMETADATA;

Please refer to RAL Data Migration for more DistSQL.

openGauss User Guide

Environment

Supported openGauss versions are 2.0.1 to 3.0.0.

Authority required

1. Modify WAL configuration.
postgresql.conf configuration sample:
wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

Please refer to Write Ahead Log and Replication for details.
2. Configure openGauss and grant Proxy the replication permission.

pg_hba.conf configuration sample:
host replication repl_acct 0.0.0.0/0 md5

Please refer to Configuring Client Access Authentication and Example: Logic Replication Code for details.

Complete Procedure Example

Prerequisite

1. Prepare the source database, table, and data in openGauss.
DROP DATABASE IF EXISTSmigration_ds_0;
CREATE DATABASEmigration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in openGauss.
DROP DATABASE IF EXISTSmigration_ds_10;
CREATE DATABASEmigration_ds_10;

DROP DATABASE IF EXISTSmigration_ds_11;
CREATE DATABASEmigration_ds_11;

323

https://opengauss.org/en/docs/2.0.1/docs/Developerguide/settings.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/sending-server.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/configuring-client-access-authentication.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html


Beijing SphereEx Technology Co., Ltd.

DROP DATABASE IF EXISTSmigration_ds_12;
CREATE DATABASEmigration_ds_12;

Procedure

1. Create a new logical database and configure resources and rules.
CREATE DATABASE sharding_db;

\c sharding_db

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_10",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_11",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_12",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding‑count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‑creation statements in proxy.
2. Configure the source resources in proxy.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_0",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Enable data migration.
MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.
MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema.
MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.
SHOWMIGRATION LIST;

324



Beijing SphereEx Technology Co., Ltd.

Result example:
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| id | tables | sharding_total_count | active | create_time | stop_time |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true | 2022‑10‑13 11:16:01 |NULL |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

5. View the data migration details.
SHOWMIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| item | data_source | status | active | processed_records_count | inventory_finished_percentage | incremental_idle_
seconds | error_message |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6 | 100 | 81 | |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

6. Verify data consistency.
CHECKMIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

Query the check progress.
SHOWMIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| tables | result | finished_percentage | remaining_seconds | check_begin_time | check_end_time | duration_seconds |
error_message |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| t_order | true | 100 | 0 | 2022‑10‑13 11:18:15.171 | 2022‑10‑13 11:18:15.878 | 0 | |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

7. Commit the job.
COMMITMIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. Refresh metadata.
REFRESH TABLEMETADATA;

Please refer to RAL Data Migration for more DistSQL.

325



Beijing SphereEx Technology Co., Ltd.

7.2.12 Session Management

SphereEx‑DBPlusEngine supports session management. You can view the current session or kill the session through
the SQL of the native database.
Currently, this function is only available when the storage node is MySQL. MySQL SHOW PROCESSLIST and KILL com‑
mands are supported.

Usage

View Session

Different associated databases support different methods for viewing sessions. The show processlist command can
be used to view sessions for associated MySQL databases.
SphereEx‑DBPlusEngine will automatically generate a unique UUID ID as the ID and store the SQL execution informa‑
tion in each instance.
When this command is executed, SphereEx‑DBPlusEngine will collect and synchronize the SQL execution information
of each computing node through the governance center, and then summarize and return it to the user.
mysql> show processlist;
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Id |User |Host | db | Command | Time | State | Info |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 05ede3bd584fd4a429dcaac382be2973 | root | 127.0.0.1 | sharding_db | Execute | 2 | Executing 0/1 | select sleep(10) |
| f9e5c97431567415fe10badc5fa46378 | root | 127.0.0.1 | sharding_db | Sleep | 690 | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

■ Output Description
Here it simulates the output of native MySQL, but the Id field is a special random string.

Kill Session

The user determines whether the KILL statement needs to be executed according to the results returned by SHOW
PROCESSLIST. SphereEx‑DBPlusEngine will cancel the SQL in execution according to the ID in the KILL statement.
mysql> kill 05ede3bd584fd4a429dcaac382be2973;
Query OK, 0 rows affected (0.04 sec)

mysql> show processlist;
Empty set (0.02 sec)

7.2.13 Observability

The SphereEx‑DBPlusEngine has a built‑in observability plugin SphereEx‑Agent, which provides users with functions
such as extended logs, monitoring indicators, and link tracking.

326



Beijing SphereEx Technology Co., Ltd.

Agent Configuration

Directory structure

Agent related files are located in the sphereex‑dbplusengine‑proxy/sphereex‑agent directory.
.
├── conf
│ └──agent.yaml
├── lib
│ ├── ...
├──plugins
│ ├── ...
├── template
│ └──dbplusengine‑grafana‑template.json
└── tool
└── ...

Configuration Description

■ conf/agent.yaml is used to manage Agent configuration.
■ Built‑in plugins include Jaeger, OpenTracing, Zipkin, OpenTelemetry, BaseLogging and Prometheus.
■ The BaseLogging plug‑in is enabled by default, and the slow log query function is enabled.

agent.yaml the default configuration contents are as follows:
plugins:
logging:
BaseLogging:
props:
slow‑query‑log: true
long‑query‑time: 5000
general‑query‑log: false

# metrics:
# Prometheus:
# host: "0.0.0.0"
# port: 9090
# props:
# jvm‑information‑collector‑enabled: "true"
# tracing:
# Jaeger:
# host: "localhost"
# port: 5775
# props:
# service‑name: "dbplusengine"
# jaeger‑sampler‑type: "const"
# jaeger‑sampler‑param: "1"
# Zipkin:
# host: "localhost"
# port: 9411
# props:
# service‑name: "dbplusengine"
# url‑version: "/api/v2/spans"
# sampler‑type: "const"
# sampler‑param: "1"
# SkyWalking:
# props:
# opentracing‑tracer‑class‑name: "org.apache.skywalking.apm.toolkit.opentracing.SkywalkingTracer"
# OpenTelemetry:
# props:

327



Beijing SphereEx Technology Co., Ltd.

# otel‑resource‑attributes: "service.name=dbplusengine"
# otel‑traces‑exporter: "zipkin"

Parameter Description

Name Description Va lue ra nge Default
value

jvm‑
informat
ion‑
collector‑
enabled

Start JVM
collector

tr ue, fa lse true

service‑
name

Tracking
service
name

Cus tom dbplusen‑
gine

jaeger‑
sampler‑
type

Jaeger sam‑
ple rate type

con st, pr oba bil ist ic, r ate lim iti ng, rem ote const

jaeger‑
sampler‑
param

Jaeger sam‑
ple rate pa‑
rameter

co nst :0, 1, pr oba bil ist ic: 0.0 ‑ 1 .0, r ate lim iti ng: > 0, Cus tom ize the
num ber of acq uis iti ons per s eco nd, rem ote：n eed to cus tom ize
the rem ote s erv ice add res ,JA EGE R_S AMP LER _MA NAG ER_ HOS
T_P ORT

1 (const
type)

url‑version Zipkin url
address

Cus tom /api/v2/spans

sampler‑
type

Zipkin sam‑
ple rate type

co nst、c oun tin g、ra tel imi tin g、bo und ary const

sampler‑
param

Zipkin sam‑
pling rate
parameter

c ons t：0, 1, co unt ing：0 .01 ‑ 1 .0, r ate lim iti ng: > 0, cus tom ize the
num ber of co lle cti ons per s eco nd, bou nda ry: 0.0 001 ‑ 1.0

1 (const
type)

ote l‑
resource‑
attributes

open‑
telemetry
properties

Str ing key va lue p air (, spl it) service.na
me=dbplusengine‑
agent

otel‑traces‑
exporter

Tracing ex‑
poter

z ipk in, jae ger zipkin

otel‑traces‑
sampler

Open‑
telemetry
sample rate
type

a lwa ys_ on, al way s_o ff, tra cei dra tio always_on

ot el‑
traces‑
sampler‑
arg

Open‑
telemetry
sample rate
parameter

tr ace idr ati o：0.0 ‑ 1.0 1.0

Used in DBPlusEngine‑Proxy

In the sphereex‑dbplusengine‑proxy/bin/ directory, two startup scripts are provided for users: ‑ start.sh ‑
start‑with‑agent.sh
When the user needs the Agent function, execute start‑with‑agent.sh to start DBPlusEngine‑Proxy.
bin/start‑with‑agent.sh

After successful startup, you can find the loading information of the plugin in the DBPlusEngine‑Proxy log.
If the‘metrics’or‘tracing’configuration is enabled, relevant data can be viewed through the configuredmonitoring
address after accessing the proxy.

328



Beijing SphereEx Technology Co., Ltd.

7.3 Error Code

This chapter lists the error codes of DBPlusEngine. They include SQL error codes and server error codes.
All contents of this chapter are a draft, the error codesmay be adjusted.

7.3.1 SQL Error Code

SQL error codes provide by standard SQL State, Vendor Code and Reason, which return to the client when SQL execute
error.
The error codes are draft, theymay be adjusted.

Kernel Exception

Meta data

SQL State Vendor Code Reason
42000 10000 Resource does not exist.
08000 10001 The URL%s is not recognized, please refer to the pattern %s.
42000 10002 Cannot support 3‑tier structure for actual data node%s with JDBC%s.
HY004 10003 Invalid format for actual data node%s.
42000 10004 Unsupported SQL node conversion for SQL statement %s.
42000 10010 Rule does not exist.
42S02 10020 Schema%s does not exist.
42S02 10021 Single table %s does not exist.
HY000 10022 Cannot load table with database name%s and data source name%s.
0A000 10030 Cannot drop schema%s because of contains tables.

Data

SQL State Vendor Code Reason
HY004 11000 Invalid value %s.
HY004 11001 Unsupported conversion data type %s for value %s.
HY004 11010 Unsupported conversion stream charset %s.

Syntax

SQL State Vendor Code Reason
42000 12000 You have an error in your SQL syntax: %s
42000 12001 Cannot accept SQL type %s.
42000 12002 SQL String can not be NULL or empty.
42000 12010 Cannot support variable %s.
42S02 12011 Cannot find column label %s.
HV008 12020 Column index %d is out of range.
0A000 12100 DROP TABLE⋯CASCADE is not supported.

329



Beijing SphereEx Technology Co., Ltd.

Connection

SQL
State

Ven‑
dor
Code

Reason

08000 13000 Cannot register driver, reason is: %s
01000 13010 Circuit break open, the request has been ignored.
08000 13020 Cannot get%d connections one time, partition succeed c onnection(%d) have released. Please con‑

sider increasing the ` maxPoolSize` of the data sources or decreasing the max‑co nnections‑siz e‑
per‑query in properties.

08000 13030 Connection has been closed.
08000 13031 Result set has been closed.
HY000 13090 Load datetime from database failed, reason: %s

Transaction

SQL State Vendor Code Reason
25000 14000 Switch transaction type failed, please terminate the current transaction.
25000 14100 JDBC does not support operations across multiple logical databases in transaction.
25000 14200 Cannot start new XA transaction in a active transaction.
25000 14201 Failed to create %s XA data source.

Lock

SQL State Vendor Code Reason
HY000 15000 The table %s of schema%s is locked.
HY000 15001 The table %s of schema%s lock wait timeout of %smilliseconds exceeded.

Audit

SQL State Vendor Code Reason
44000 16000 SQL check failed, error message: %s

Cluster

SQL State Vendor Code Reason
HY000 17000 Work ID assigned failed, which can not exceed 1024.
HY000 17001 Cannot find%s file for datetime initialize.
HY000 17002 File access failed, reason is: %s
HY000 17010 Cluster persist repository error, reason is: %s

330



Beijing SphereEx Technology Co., Ltd.

Migration

S QL S ta
te

Ven dor C
ode

Reason

4 40 00 18 001 Created rule already existed.
4 40 00 18 002 Altered rule does not exist.
H Y0 00 18 020 Failed to get DDL for table %s.
4 2S 01 18 030 Duplicate resource names %s.
4 2S 02 18 031 Resource names %s do not exist.
0 A0 00 18 032 Unsupported data type %s of unique key for pipeline job.
H Y0 00 18 050 Before data record is %s, after data record is %s.
0 80 00 18 051 Data check table %s failed.
0 A0 00 18 052 Unsupported pipeline database type %s.
0 A0 00 18 053 Unsupported CRC32 data consistency calculate algorithmwith database type %s.
H Y0 00 18 080 Cannot find pipeline job %s.
H Y0 00 18 081 Job has already started.
H Y0 00 18 082 Sharding count of job %s is 0.
H Y0 00 18 083 Cannot split by range for table %s, reason is: %s
H Y0 00 18 084 Cannot split by unique key %s for table %s, reason is: %s
H Y0 00 18 085 Target table %s is not empty.
0 10 07 18 086 Source data source lacks %s privilege(s).
H Y0 00 18 087 Source data source required %s =%s, now is %s.
H Y0 00 18 088 User %s does exist.
0 80 00 18 089 Check privileges failed on source data source, reason is: %s
0 80 00 18 090 Data sources can not connect, reason is: %s
H Y0 00 18 091 Importer job write data failed.
0 80 00 18 092 Get binlog position failed by job %s, reason is: %s
H Y0 00 18 093 Cannot poll event because of binlog sync channel already closed.
H Y0 00 18 094 Task %s execute failed.
H Y0 00 18 095 Job has already finished, please run CHECK MIGRATION %s to start a new data consis‑

tency check job.
H Y0 00 18 096 Incomplete consistency check job %s exists.

DistSQL

SQL State Vendor Code Reason
44000 19000 Cannot process invalid resources, error message is: %s
44000 19001 Resources %s do not exist in database %s.
44000 19002 There is no resource in the database %s.
44000 19003 Resource %s is still used by %s.
44000 19004 Duplicate resource names %s.
44000 19100 Invalid %s rule %s, error message is: %s
44000 19101 %s rules %s do not exist in database %s.
44000 19102 %s rules %s in database %s are still in used.
44000 19103 %s rule %s has been enabled in database %s.
44000 19104 %s rule %s has been disabled in database %s.
44000 19105 Duplicate %s rule names %s in database %s.
44000 19150 Invalid %s algorithm(s) %s.
44000 19151 %s algorithm(s) %s do not exist in database %s.
44000 19152 %s algorithms%s in database %s are still in used.
44000 19153 Duplicate %s algorithms%s in database %s.

331



Beijing SphereEx Technology Co., Ltd.

Feature Exception

Data Sharding

SQL State Vendor Code Reason
44000 20000 Cannot find table rule with logic tables %s.
44000 20001 Cannot get uniformed table structure for logic table %s, it has different meta data of actual tables are as follows: %s
42S02 20002 Cannot find data source in sharding rule, invalid actual data node%s.
44000 20003 Data nodes must be configured for sharding table %s.
44000 20004 Actual table %s.%s is not in table rule c onfiguration.
44000 20005 Cannot find binding actual table, data source is %s, logic table is %s, other actual table is %s.
44000 20006 Actual tables %s are in use.
42S01 20007 Index %s already exists.
42S02 20008 Index %s does not exist.
42S01 20009 View name has to bind to %s tables.
44000 20020 Sharding value can’t be null in insert statement.
HY004 20021 Found different types for sharding value %s.
HY004 20022 Invalid %s, datetime pattern should be %s, value is %s.
0A000 20040 Cannot support operation %s with sharding table %s.
44000 20041 Cannot update sharding value for table %s.
0A000 20042 The CREATE VIEW statement contains unsupported query statement.
44000 20043 PREPARE statement cannot support sharding tables route to same data sources.
44000 20044 The table inserted and the table selected must be the same or bind tables.
0A000 20045 Cannot support DML operation with multiple tables %s.
42000 20046 %s⋯LIMIT cannot support route to multiple data nodes.
44000 20047 Cannot find actual data source intersection for logic tables %s.
42000 20048 INSERT INTO⋯SELECT can not support applying key generator with absent generate key column.
0A000 20049 Alter view rename .. to .. statement should have same config for %s and%s.
HY000 20060 %s%s can not route correctly for %s%s.
42S02 20061 Cannot get route result, please check your sharding rule c onfiguration.
34000 20062 Cannot get cursor name from fetch statement.
HY000 20080 Sharding algorithm class %s should be implement %s.
HY000 20081 Routed target %s does not exist, available targets are %s.
44000 20082 Inline sharding algorithms expression %s and sharding column%s do not match.
44000 20090 Cannot find strategy for generate keys with table %s.
HY000 20099 Sharding plugin error, reason is: %s

Readwrite Splitting

SQL State Vendor Code Reason
HY004 20280 Invalid read database weight %s.

Database HA

SQL State Vendor Code Reason
HY000 20380 MGR plugin is not active in database %s.
44000 20381 MGR is not in single primary mode in database %s.
44000 20382 %s is not in MGR replication groupmember in database %s.
44000 20383 Group name in MGR is not same with configured one %s in database %s.

332



Beijing SphereEx Technology Co., Ltd.

SQL Dialect Translator

SQL State Vendor Code Reason
42000 20440 Cannot support database %s in SQL translation.
42000 20441 Translation error, SQL is: %s

TrafficManagement

SQL State Vendor Code Reason
42S02 20500 Cannot get traffic execution unit.

Data Encrypt

SQL
State

Vendor
Code

Reason

44000 20700 Cannot find logic encrypt column by%s.
44000 20701 Failure to find encrypt column%s from table %s.
44000 20702 Altered column%s must use same encrypt algorithm with previous column%s in table

%s.
42000 20740 Insert value of index %s can not support for encrypt.
0A000 20741 The SQL clause %s is unsupported in encrypt rule.
HY004 20780 Encrypt algorithm%s i nitialization failed, reason is: %s

Shadow Database

SQL State Vendor Code Reason
HY004 20820 Shadow column%s of table %s does not support %s type.
42000 20840 Insert value of index %s can not support for shadow.

Other Exception

SQL State Vendor Code Reason
HY004 30000 Unknown exception: %s
0A000 30001 Unsupported SQL operation: %s
0A000 30002 Database protocol exception: %s
0A000 30003 Unsupported command: %s

333



Beijing SphereEx Technology Co., Ltd.

7.3.2 Server Error Code

Unique codes provided when server exception occur, which printed by Proxy backend or Driver startup logs.

Error Code Reason
SPI‑00001 No implementation class load from SPI %s with type %s.
DATA‑SOURCE‑00001 Data source unavailable.
PROPS‑00001 Value %s of %s cannot convert to type %s.
PROXY‑00001 Load database server info failed.
SPRING‑00001 Cannot find JNDI data source.
SPRING‑SHARDING‑00001 Cannot support type %s.

334



Beijing SphereEx Technology Co., Ltd.

8
Dev Manual

DBPlus Engine provides dozens of SPI based extensions. It is very convenient for developers to customize the features.
This chapter lists all SPI extensions of DB Plus Engine. If there is no special requirement, users can use the built‑in im‑
plementation provided by DB Plus Engine; advanced users can refer to the interfaces for customized implementation.

■ Traffic Dual Routing (Commercial Edition)

8.1 Mode

8.1.1 ClusterPersistRepository

SPI Name Description
ClusterPersistRepository Registry center repository

Implementation Class Description
ZooKeeper ZooKeeper registry center repository
Etcd Etcd registry center repository
SphereEx:MATE MATE registry center repository

335



Beijing SphereEx Technology Co., Ltd.

8.1.3 GovernanceWatcher

SPI Name Description
GovernanceWatcher Governance watcher

Implementation Class Description
StorageNodeStateChangedWatcher Storage node changed watcher
ComputeNodeStateChangedWatcher Compute node changed watcher
PropertiesChangedWatcher Properties changed watcher
PrivilegeNodeChangedWatcher Privilege changed watcher
GlobalRuleChangedWatcher Global rule changed watcher
MetaDataChangedWatcher Meta data changed watcher

8.2 Configuration

8.2.1 RuleBuilder

SPI Name Description
RuleBuilder Used to convert user configurations to rule objects

Implementation Class Description
AlgorithmPro videdReadwriteSpl
ittingRuleBuilder

Used to convert algorithm‑based read‑write separation user configuration
into read‑write separation rule objects

AlgorithmPr ovidedDatabaseDis
coveryRuleBuilder

Used to convert algorithm‑based database discovery user configuration into
database discovery rule objects

Al gorithmProvidedSh ardingRule‑
Builder

Used to convert algorithm‑based sharding user configuration into sharding
rule objects

A lgorithmProvidedE ncryptRule‑
Builder

Used to convert algorithm‑based encryption user configuration into encryp‑
tion rule objects

AlgorithmProvided ShadowRule‑
Builder

Used to convert algorithm‑based shadow database user configuration into
shadow database rule objects

ReadwriteSpl ittingRuleBuilder Used to convert read‑write separation user configuration into read‑write sep‑
aration rule objects

DatabaseDis coveryRuleBuilder Used to convert database discovery user configuration into database discov‑
ery rule objects

Singl eTableRuleBuilder Used to convert single‑table user configuration into a single‑table rule objects
Aut horityRuleBuilder Used to convert permission user configuration into permission rule objects
Sh ardingRuleBuilder Used to convert sharding user configuration into sharding rule objects
E ncryptRuleBuilder Used to convert encrypted user configuration into encryption rule objects
ShadowRuleBuilder Used to convert shadow database user configuration into shadow database

rule objects
Trans actionRuleBuilder Used to convert transaction user configuration into transaction rule objects
SQL ParserRuleBuilder Used to convert SQL parser user configuration into SQL parser rule objects

336



Beijing SphereEx Technology Co., Ltd.

8.2.2 YamlRuleConfigurationSwapper

SPI Name Description
YamlRul eConfigurationSwapper Used to convert YAML configuration to standard user configuration

Implementation Class Description
ReadwriteSplittingRul eAlgorithm‑
ProviderCon figurationYamlSwapper

Used to convert algorithm‑based read‑write separation configuration
into read‑write separation standard configuration

DatabaseDiscoveryRul eAlgorithm‑
ProviderCon figurationYamlSwapper

Used to convert algorithm‑based database discovery configuration
into database discovery standard configuration

ShardingRul eAlgorithmProviderCon fig‑
urationYamlSwapper

Used to convert algorithm‑based sharding configuration into sharding
standard configuration

EncryptRul eAlgorithmProviderCon figu‑
rationYamlSwapper

Used toconvert algorithm‑basedencryptionconfiguration intoencryp‑
tion standard configuration

ShadowRul eAlgorithmProviderCon figu‑
rationYamlSwapper

Used to convert algorithm‑based shadow database configuration into
shadow database standard configuration

Read writeSplittingRuleCon figura‑
tionYamlSwapper

Used to convert the YAML configuration of read‑write separation into
the standard configuration of read‑write separation

Dat abaseDiscoveryRuleCon figura‑
tionYamlSwapper

Used to convert the YAML configuration of database discovery into the
standard configuration of database discovery

AuthorityRuleCon figurationYamlSwap‑
per

Used to convert the YAML configuration of permission rules into stan‑
dard configuration of permission rules

ShardingRuleCon figurationYamlSwap‑
per

Used to convert the YAML configuration of the shard into the standard
configuration of the shard

EncryptRuleCon figurationYamlSwapper Used to convert encrypted YAMLconfiguration into encrypted standard
configuration

ShadowRuleCon figurationYamlSwapper Used to convert the YAML configuration of the shadow database into
the standard configuration of the shadow database

TransactionRuleCon figurationYaml‑
Swapper

Used to convert the YAMLconfigurationof the transaction into the stan‑
dard configuration of the transaction

SingleTableRuleCon figurationYaml‑
Swapper

Used to convert the YAMLconfigurationof the single table into the stan‑
dard configuration of the single table

SQLParserRuleCon figurationYamlSwap‑
per

Used to convert the YAML configuration of the SQL parser into the stan‑
dard configuration of the SQL parser

8.2.3 ShardingSphereYamlConstruct

SPI Name Description
ShardingSphereYamlConstruct Used to convert customized objects and YAML to each other

Implementation Class Description
NoneShardingStrate gyConfigurationYamlCon‑
struct

Used to convert non sharding strategyandYAML toeachother

337



Beijing SphereEx Technology Co., Ltd.

8.3 Kernel

8.3.1 SQLRouter

SPI Name Description
SQLRouter Used to process routing results

Implementation Class Description
Re adwriteSplittingSQLRouter Used to process read‑write separation routing results
D atabaseDiscoverySQLRouter Used to process database discovery routing results
SingleTableSQLRouter Used to process single‑table routing results
ShardingSQLRouter Used to process sharding routing results
ShadowSQLRouter Used to process shadow database routing results

8.3.2 SQLRewriteContextDecorator

SPI Name Description
SQLRewriteContextDecorator Used to process SQL rewrite results

SPI Name Description
Shardin gSQLRewriteContextDecorator Used to process sharding SQL rewrite results
Encryp tSQLRewriteContextDecorator Used to process encryption SQL rewrite results

8.3.3 SQLExecutionHook

SPI Name Description
SQLExecutionHook Hook of SQL execution

Implementation Class Description
TransactionalSQLExecutionHook Transaction hook of SQL execution

8.3.4 ResultProcessEngine

SPI Name Description
ResultProcessEngine Used bymerge engine to process result set

Implementation Class Description
Shard ingResultMergerEngine Used bymerge engine to process sharding result set
Encrypt ResultDecoratorEngine Used bymerge engine to process encryption result set

338



Beijing SphereEx Technology Co., Ltd.

8.3.5 StoragePrivilegeHandler

SPI Name Description
StoragePrivilegeHandler Use SQL dialect to process privilege metadata

Implementation Class Description
Postg reSQLPrivilegeHandler Use PostgreSQL dialect to process privilege metadata
SQLS erverPrivilegeHandler Use SQLServer dialect to process privilege metadata
O raclePrivilegeHandler Use Oracle dialect to process privilege metadata
MySQLPrivilegeHandler Use MySQL dialect to process privilege metadata

8.4 DataSource

8.4.1 DatabaseType

SPI Name Description
DatabaseType Supported database type

Implementation Class Description
SQL92DatabaseType SQL92 database type
MySQLDatabaseType MySQL database
MariaDBDatabaseType MariaDB database
PostgreSQLDatabaseType PostgreSQL database
OracleDatabaseType Oracle database
SQLServerDatabaseType SQLServer database
H2DatabaseType H2 database
OpenGaussDatabaseType OpenGauss database

8.4.2 DialectTableMetaDataLoader

SPI Name Description
DialectTableMetaDataLoader Use SQL dialect to loadmeta data rapidly

Implementation Class Description
MySQLTableMetaDataLoader Use MySQL dialect to loadmeta data
OracleTableMetaDataLoader Use Oracle dialect to loadmeta data
PostgreSQLTableMetaDataLoader Use PostgreSQL dialect to loadmeta data
SQLServerTableMetaDataLoader Use SQLServer dialect to loadmeta data
H2TableMetaDataLoader Use H2 dialect to loadmeta data
OpenGaussTableMetaDataLoader Use OpenGauss dialect to loadmeta data

339



Beijing SphereEx Technology Co., Ltd.

8.4.3 DataSourcePoolMetaData

SPI Name Description
DataSourcePoolMetaData Data source pool meta data

Implementation Class Description
DBCPDataSourcePoolMetaData DBCP data source pool meta data
HikariDataSourcePoolMetaData Hikari data source pool meta data
TomcatDBCPDataSourcePoolMetaData Tomcat DBCP data source pool meta data

8.4.4 DataSourcePoolDestroyer

SPI Name Description
DataSourcePoolDestroyer Data source pool destroyer

Implementation Class Description
DefaultDataSourcePoolDestroyer Default data source pool destroyer
HikariDataSourcePoolDestroyer Hikari data source pool destroyer

8.5 SQL Parser

8.5.1 DatabaseTypedSQLParserFacade

SPI Name Description
DatabaseTypedSQLParserFacade SQL parser facade for lexer and parser

Implementation Class Description
MySQLParserFacade SQL parser facade for MySQL
PostgreSQLParserFacade SQL parser facade for PostgreSQL
SQLServerParserFacade SQL parser facade for SQLServer
OracleParserFacade SQL parser facade for Oracle
SQL92ParserFacade SQL parser facade for SQL92
OpenGaussParserFacade SQL parser facade for openGauss

8.5.2 SQLVisitorFacade

SPI Name Description
SQLVisitorFacade SQL AST visitor facade

Implementation Class Description
MySQLS tatementSQLVisitorFacade SQL visitor of statement extracted facade for MySQL
PostgreSQLS tatementSQLVisitorFacade SQL visitor of statement extracted facade for PostgreSQL
SQLServerS tatementSQLVisitorFacade SQL visitor of statement extracted facade for SQLServer
OracleS tatementSQLVisitorFacade SQL visitor of statement extracted facade for Oracle
SQL92S tatementSQLVisitorFacade SQL visitor of statement extracted facade for SQL92

340



Beijing SphereEx Technology Co., Ltd.

8.6 Proxy

8.6.1 DatabaseProtocolFrontendEngine

SPI Name Description
DatabaseProto colFron‑
tendEngine

Regulate parse and adapter protocol of database access for ShardingSphere‑
Proxy

Implementation Class Description
MySQLFrontendEngine Base on MySQL database protocol
PostgreSQLFrontendEngine Base on PostgreSQL database protocol
OpenGaussFrontendEngine Base on openGauss database protocol

8.6.2 JDBCDriverURLRecognizer

SPI Name Description
JDBCDriverURLRecognizer Use JDBC driver to execute SQL

Implementation Class Description
MySQLRecognizer Use MySQL JDBC driver to execute SQL
PostgreSQLRecognizer Use PostgreSQL JDBC driver to execute SQL
OracleRecognizer Use Oracle JDBC driver to execute SQL
SQLServerRecognizer Use SQLServer JDBC driver to execute SQL
H2Recognizer Use H2 JDBC driver to execute SQL
P6SpyDriverRecognizer Use P6Spy JDBC driver to execute SQL
OpenGaussRecognizer Use openGauss JDBC driver to execute SQL

8.6.3 AuthorityProviderAlgorithm

SPI Name Description
AuthorityProviderAlgorithm User authority loading logic

Implementation Class Type Description
AllPerm ittedPrivilegesP
roviderAlgorithm

A LL_PER MIT‑
TED

All privileges granted to user by default (No authentication). Will
not interact with the actual database.

DatabasePerm ittedPrivi‑
legesP roviderAlgorithm

DATABA
SE_PER MIT‑
TED

Permissions configured through the attribute user‑database‑
mappings.

341



Beijing SphereEx Technology Co., Ltd.

8.7 Data Sharding

8.7.1 ShardingAlgorithm

SPI Name Description
ShardingAlgorithm Sharding algorithm

Implementation Class Description
Boundar yBasedRangeShardingAlgorithm Boundary based range sharding algorithm
Volum eBasedRangeShardingAlgorithm Volume based range sharding algorithm
ComplexInlineShardingAlgorithm Complex inline sharding algorithm
A utoIntervalShardingAlgorithm Mutable interval sharding algorithm
ClassBasedShardingAlgorithm Class based sharding algorithm
HintInlineShardingAlgorithm Hint inline sharding algorithm
IntervalShardingAlgorithm Fixed interval sharding algorithm
HashModShardingAlgorithm Hashmodulo sharding algorithm
InlineShardingAlgorithm Inline sharding algorithm
ModShardingAlgorithm Modulo sharding algorithm

8.7.2 KeyGenerateAlgorithm

SPI Name Description
KeyGenerateAlgorithm Key generate algorithm

Implementation Class Description
SnowflakeKeyGenerateAlgorithm Snowflake key generate algorithm
UUIDKeyGenerateAlgorithm UUID key generate algorithm

8.7.3 DatetimeService

SPI Name Description
DatetimeService Use current time for routing

Implementation Class Description
DatabaseDa tetimeServiceDelegate Get the current time from the database for routing
SystemDatetimeService Get the current time from the application system for routing

8.7.4 DatabaseSQLEntry

SPI Name Description
DatabaseSQLEntry Database dialect for get current time

342



Beijing SphereEx Technology Co., Ltd.

Implementation Class Description
MySQLDatabaseSQLEntry MySQL dialect for get current time
PostgreSQLDatabaseSQLEntry PostgreSQL dialect for get current time
OracleDatabaseSQLEntry Oracle dialect for get current time
SQLServerDatabaseSQLEntry SQLServer dialect for get current time

8.8 Read/write splitting

8.8.1 ReadwriteSplittingType

SPI Name Description
ReadwriteSplittingType Readwrite‑splitting type

Implementation Class Description
StaticReadwriteSplittingType Static readwrite‑splitting type
DynamicReadwriteSplittingType Dynamic readwrite‑splitting type

8.8.2 ReadQueryLoadBalanceAlgorithm

SPI Name Description
ReadQueryLoadBalanceAlgorithm Load balance algorithm of replica databases

Implementation Class Description
RoundRobinRe plicaLoadBalanceAlgorithm Round robin load balance algorithm of replica databases
RandomRe plicaLoadBalanceAlgorithm Random load balance algorithm of replica databases
WeightRe plicaLoadBalanceAlgorithm Weight load balance algorithm of replica databases
DelayRe plicaLoadBalanceAlgorithm Delay load balance algorithm of replica databases

8.9 HA

8.9.1 DatabaseDiscoveryType

SPI Name Description
DatabaseDiscoveryType Database discovery type

Implementation Class Description
MGRDatabaseDiscoveryType Database discovery of MySQL’s MGR
OpenGaussDatabaseDiscoveryType Database discovery of openGauss

343



Beijing SphereEx Technology Co., Ltd.

8.10 Distributed Transaction

8.10.1 ShardingSphereTransactionManager

SPI Name Description
ShardingSphereTransactionManager Distributed transaction manager

Implementation Class Description
X AShardingSphereTransactionManager XA distributed transaction manager
SeataA TShardingSphereTransactionManager Seata distributed transaction manager

8.10.2 XATransactionManagerProvider

SPI Name Description
XATransactionManagerProvider XA distributed transaction manager

Implementation Class Description
Atomikos TransactionManagerProvider XA distributed transaction manager based on Atomikos
NarayanaXA TransactionManagerProvider XA distributed transaction manager based on Narayana
BitronixXA TransactionManagerProvider XA distributed transaction manager based on Bitronix

8.10.3 XADataSourceDefinition

SPI Name Description
XADataSourceDefinition Auto convert Non XA data source to XA data source

Implementation Class Description
MySQLXAD ataSourceDefinition Auto convert Non XA MySQL data source to XA MySQL data source
MariaDBXAD ataSourceDefinition Auto convert Non XA MariaDB data source to XA MariaDB data source
PostgreSQLXAD ataSourceDefinition Auto convert Non XA PostgreSQL data source to XA PostgreSQL data source
OracleXAD ataSourceDefinition Auto convert Non XA Oracle data source to XA Oracle data source
SQLServerXAD ataSourceDefinition Auto convert Non XA SQLServer data source to XA SQLServer data source
H2XAD ataSourceDefinition Auto convert Non XA H2 data source to XA H2 data source

8.10.4 DataSourcePropertyProvider

SPI Name Description
DataS ourcePropertyProvider Used to get standard properties of data source pool

Implementation Class Description
HikariCPPropertyProvider Used to get standard properties of HikariCP

344



Beijing SphereEx Technology Co., Ltd.

8.11 Scaling

8.11.1 ScalingEntry

SPI Name Description
ScalingEntry Entry of scaling

Implementation Class Description
MySQLScalingEntry MySQL entry of scaling
PostgreSQLScalingEntry PostgreSQL entry of scaling
OpenGaussScalingEntry openGauss entry of scaling

8.11.2 JobCompletionDetectAlgorithm

SPI Name Description
JobCompletionDetectAlgorithm Job completion check algorithm

Implementation Class Description
IdleRuleAl teredJobCompletionDetectAlgorithm Incremental task idle time based algorithm

8.11.3 DataConsistencyCheckAlgorithm

SPI Name Description
DataConsistencyCheckAlgorithm Data consistency check algorithm on source and target database cluster

Implementation Class Description
DataMatchDataC onsistencyCheckAlgorithm Records content match implementation. Type name:

DATA_MATCH.
CRC32MatchDataC onsistencyCheckAlgo‑
rithm

Records CRC32 match implementation. Type name:
CRC32_MATCH.

8.11.4 SingleTableDataCalculator

SPI Name Description
S ingleTableDataCalculator Single table data calculator for data consistency check

Implementation Class Description
DataMatchS ingleTableDataCalculator Single table data calculator for DATA_MATCH data consistency

check
CRC32MatchMySQLS ingleTableDataCalcula‑
tor

Single table data calculator for CRC32_MATCH data consistency
check

345



Beijing SphereEx Technology Co., Ltd.

8.12 SQL Checker

8.12.1 SQLChecker

SPI Name Description
SQLChecker SQL checker

Implementation Class Description
AuthorityChecker Authority checker

8.13 Encryption

8.13.1 EncryptAlgorithm

SPI Name Description
EncryptAlgorithm Data encrypt algorithm

Implementation Class Description
MD5EncryptAlgorithm MD5 data encrypt algorithm
AESEncryptAlgorithm AES data encrypt algorithm
RC4EncryptAlgorithm RC4 data encrypt algorithm
SM3EncryptAlgorithm SM3 data encrypt algorithm
SM4EncryptAlgorithm SM4 data encrypt algorithm

8.13.2 QueryAssistedEncryptAlgorithm

SPI Name Description
QueryAss istedEncryptAlgorithm Data encrypt algorithmwhich include query assisted column

Implementation Class Description
None

8.14 Shadow DB

8.14.1 ShadowAlgorithm

SPI Name Description
ShadowAlgorithm shadow routing algorithm

Implementation Class Description
ColumnValueMatchShadowAlgorithm Column value match shadow algorithm
ColumnRegexMatchShadowAlgorithm Column regex match shadow algorithm
SimpleHintShadowAlgorithm Simple hint shadow algorithm

346



Beijing SphereEx Technology Co., Ltd.

8.15 Observability

8.15.1 PluginDefinitionService

SPI Name Description
PluginDefinitionService Agent plugin definition

Implementation Class Description
PrometheusPluginDefinitionService Prometheus plugin
BaseLoggingPluginDefinitionService Logging plugin
JaegerPluginDefinitionService Jaeger plugin
OpenTelemetryTracingPluginDefinitionService OpenTelemetryTracing plugin
OpenTracingPluginDefinitionService OpenTracing plugin
ZipkinPluginDefinitionService Zipkin plugin

8.15.2 PluginBootService

SPI Name Description
PluginBootService Plugin startup service definition

Implementation Class Description
PrometheusPluginBootService Prometheus plugin startup class
BaseLoggingPluginBootService Logging plugin startup class
JaegerTracingPluginBootService Jaeger plugin startup class
OpenTelemetryTracingPluginBootService OpenTelemetryTracing plugin startup class
OpenTracingPluginBootService OpenTracing plugin startup class
ZipkinTracingPluginBootService Zipkin plugin startup class

8.15.3 Proxy Agent Monitoring Metrics

Metric Description Metric Type
proxy_request_total total number of requests COUNTER
p roxy_connection_total total number of connections GAUGE
proxy_e xecute_latency_millis request duration (MS) HI STOGRAM
prox y_execute_error_total Number of execution exceptions COUNTER
proxy_info Proxy information. Different values of the name tag represent different information contents. state: proxy running status value, 1 for running and 2 for fusing. uptime: runtime length milliseconds. init‑metadata‑duration: metadata loading took Ms. init‑socket‑duration: network startup took Ms. init‑backend‑duration: the backend startup tookmilliseconds. boot‑duration: boot duration takes milliseconds. boot‑time: boot timemillisecond value timestamp. GAUGE
proxy_tra nsaction_commit_total Transaction commit times COUNTER
proxy_trans action_rollback_total Transaction rollback times COUNTER
build_info Proxy build information. The name tag represents different components, and the version tag represents the component version.Name equals‘sph ereex‑plugins‑metrics‑prometheus’represents agent. Name equals‘shardingsphere‑proxy‑bootstrap’represents proxy. GAUGE
meta_data_info Metadata information. Different name tag values represent different information. database_count: number of databases. database_instance_count: number of database instances. database_catalog_count: number of data directories. datasource_count: number of data sources. table_count: number of tables (sharding table+broadcast table+single table+binding table (table group)). sharding_table_count: number of sharding tables. broadcast_table_count: number of broadcast tables. single_table_count: number of single tables. encrypt_table_count: number of encryption rules. shadow_table_count: number of shadow rules. readwrite_splitting_count: number of read/write splitting rules. db_discovery_count: number of database discovery rules. user_count: number of users. GAUGE
par se_dist_sql_rql_total Total number of DistSQL RQL types parsed COUNTER
par se_dist_sql_rdl_total Total number of DistSQL RDL types parsed COUNTER
par se_dist_sql_ral_total Total number of DistSQL RAL types parsed COUNTER
r oute_sql_select_total Total number of select SQL statements executed by route COUNTER
r oute_sql_insert_total Total number of insert SQL statements executed by route COUNTER
r oute_sql_update_total Total number of update SQL statements executed by route COUNTER
r oute_sql_delete_total Total number of delete SQL statements executed by route COUNTER
r oute_datasource_total The number of data source routes. The name tag represents the added data source name COUNTER

continues on next page

347



Beijing SphereEx Technology Co., Ltd.

Table 1 – continued from previous page
Metric Description Metric Type
route_table_total The number of table routes. The name tag represents the table name COUNTER
parse _sql_dml_insert_total Total number of insert SQL statements parsed COUNTER
parse _sql_dml_delete_total Total number of delete SQL statements parsed COUNTER
parse _sql_dml_update_total Total number of update SQL statements parsed COUNTER
parse _sql_dml_select_total Total number of select SQL statements parsed COUNTER
parse_sql_ddl_total Total number of parsing DDL SQL statements COUNTER
parse_sql_dcl_total Total number of parsing DCL SQL statements COUNTER
parse_sql_dal_total Total number of parsing DAL SQL statements COUNTER
parse_sql_tcl_total Total number of parsing TCL SQL statements COUNTER
proxy_transac tion_autocommit_total Total number of auto commit transactions COUNTER
proxy _connection_usage_sec Connection duration HI STOGRAM
proxy_request_bytes Number of requested bytes HI STOGRAM
proxy_response_bytes Number of response bytes HI STOGRAM
rou te_sql_latency_millis Routing SQL takes time HI STOGRAM
par se_sql_latency_millis Parsing duration HI STOGRAM
parse_sql_in_commit Number of SQL parsed in commit HI STOGRAM
parse_sql_in_rollback Number of SQL parsed in rollback HI STOGRAM
proxy_exec ute_error_typed_total The total number of execution errors. The name tag represents the exception class name. COUNTER
parse_sql_total Total number of SQL parsed COUNTER
route_sql_total Total number of SQL routes COUNTER
proxy_execute_total Total number of tasks executed COUNTER
proxy_backend _executor_thread_info The backend executes thread pool information. Labels of different names represent thread information in different states.(It is only of reference significance when executing tasks will affect multiple actual database tables, such as sharding data query)task_pending: Number of tasks to be executed; task_running: Number of tasks being executed; task_completed: Cumulative number of tasks completed; kernel_executor_size: In file of server.yaml, parameter kernel_executor_size configuration value. GAUGE

8.16 Traffic Dual Routing

8.16.1 TrafficAlgorithm

SPI Name Description
TrafficAlgorithm Forwarding matching algorithm

Implementation Class Description
SQLHintTrafficAlgorithm Forwarding matching algorithm based on SQL Hint
SQLMatchTrafficAlgorithm Forwarding matching algorithm based on SQL string
SQLRegexTrafficAlgorithm Regular forwarding matching algorithm based on SQL string
FirstSQLTrafficAlgorithm Transaction forwarding matching algorithm based on the first SQL forwarding result
JDBCTrafficAlgorithm Transaction forwarding matching algorithm for unified JDBC
ProxyTrafficAlgorithm Transaction forwarding matching algorithm based on unified forwarding proxy

8.16.2 TrafficLoadBalanceAlgorithm

SPI Name Description
TrafficLoadBalanceAlgorithm Proxy instance load balancing algorithm

Implementation Class Description
RandomTrafficLoadBalanceAlgorithm Proxy instance load balancing algorithm
RoundRobinTrafficLoadBalanceAlgorithm Load balancing algorithm for polling proxy instances

348



Beijing SphereEx Technology Co., Ltd.

9
Best Practices

■ Authority Control (Commercial Edition)
■ Proxy + LDAP & LDAPS Application Case (Commercial Edition)

9.1 Authority Control

9.1.1 Authority Configuration

Scenarios
The authority engine performs system initialization according to the authority rules configured in the server.yaml.
Data Planning

■ users are used to specify the initial user. For example, set root@% as the initial user.
■ The type in the privilege is used to specify the selected service provider. For example, the enterprise authority

provider SphereEx:PERMITTED is configured here.
Notes

1. The initial user has SUPER authority by default.
2. If the initial user is givennonSUPERauthorization throughDistSQL, the initial userwill lose SUPERauthorization.
3. To grant SUPER authorization again, you need to use GRANT DIST SUPER TO user statement.

Procedure
The configuration format is as follows:
authority:
users:
‑ user: root@%
password: root

privilege:
type: SphereEx:PERMITTED

349



Beijing SphereEx Technology Co., Ltd.

9.1.2 Do not Use Role Management

Scenario
An application system provides different levels of DBPlusEngine accounts for developers and operation and mainte‑
nance personnel. Among them, developers can only execute DML instructions, operation andmaintenance personnel
can execute DML + DDL instructions, and another root user is the topmanager.
Data Planning
All account requirements are as follows:

User Name User Required Authorities
root Top Administrator SUPER
zhangsan Developer ‑ Zhang San DML
wangwu Developer ‑ Wang Wu DML
develop_test Developer and tester DML
operator_1 Operation andmaintenance personnel‑1 DML + DDL
operator_2 Operation andmaintenance personnel‑2 DML + DDL

The root user is the initial user.
Procedure

1. Create eachdeveloper andoperation andmaintenance user in turn, and set the password according to the actual
situation.

‑‑ The login host is not limited, and the host configuration is omitted.
CREATE DISTUSER zhangsan IDENTIFIED BY '123456';
CREATE DISTUSERwangwu IDENTIFIED BY '123456';
CREATE DISTUSER develop_test IDENTIFIED BY '123456';
CREATE DISTUSER operator_1 IDENTIFIED BY '123456';
CREATE DISTUSER operator_2 IDENTIFIED BY '123456';

2. Authorize development users.
GRANT DIST INSERT,SELECT,UPDATE,DELETE TO zhangsan;
GRANT DIST INSERT,SELECT,UPDATE,DELETE TOwangwu;
GRANT DIST INSERT,SELECT,UPDATE,DELETE TO develop_test;

3. Authorize operation andmaintenance users.
GRANT DIST INSERT,SELECT,UPDATE,DELETE,CREATE,ALTER,DROP,TRUNCATE TO operator_1;
GRANT DIST INSERT,SELECT,UPDATE,DELETE,CREATE,ALTER,DROP,TRUNCATE TO operator_2;

4. If you need to add new development users, repeat the following two steps.
‑‑ Create new user.
CREATE DISTUSER new_developer IDENTIFIED BY '123456';
‑‑ Authorize
GRANT DIST INSERT,SELECT,UPDATE,DELETE TO new_developer;

5. If you need to add new operation andmaintenance users, repeat the following two steps.
‑‑ Create new user.
CREATE DISTUSER new_operator IDENTIFIED BY '123456';
‑‑ Authorize
GRANT DIST INSERT,SELECT,UPDATE,DELETE,CREATE,ALTER,DROP,TRUNCATE TO new_operator;

350



Beijing SphereEx Technology Co., Ltd.

9.1.3 Using Role Management

Scenarios
An application system provides different levels of DBPlusEngine accounts for developers and operation and mainte‑
nance personnel. Among them, developers can only execute DML instructions, operation andmaintenance personnel
can execute DML + DDL instructions, and another root user is the topmanager.
Data Planning
All account requirements are as follows:

User Name User Required Authorities
root Top Administrator SUPER
zhangsan Developer ‑ Zhang San DML
wangwu Developer ‑ Wang Wu DML
develop_test Developer and tester DML
operator_1 Operation andmaintenance personnel‑1 DML + DDL
operator_2 Operation andmaintenance personnel‑2 DML + DDL

Procedure
1. Create eachdeveloper andoperation andmaintenance user in turn, and set the password according to the actual

situation.
‑‑ The login host is not limited, and the host configuration is omitted.
CREATE DISTUSER zhangsan IDENTIFIED BY '123456';
CREATE DISTUSERwangwu IDENTIFIED BY '123456';
CREATE DISTUSER develop_test IDENTIFIED BY '123456';
CREATE DISTUSER operator_1 IDENTIFIED BY '123456';
CREATE DISTUSER operator_2 IDENTIFIED BY '123456';

2. Create two roles: develop_dml and operate_ddl.
CREATE DIST ROLE develop_dml;
CREATE DIST ROLE operate_ddl;

3. Authorize roles.
GRANT DIST INSERT,SELECT,UPDATE,DELETE TO develop_dml;
GRANT DIST INSERT,SELECT,UPDATE,DELETE,CREATE,ALTER,DROP,TRUNCATE TO operate_ddl;

4. Assign the developer to the user, so that the user has the authorizations owned by the role.
GRANT DIST develop_dml TO zhangsan;
GRANT DIST develop_dml TOwangwu;
GRANT DIST develop_dml TO develop_test;

5. Assign users to the operation andmaintenance role.
GRANT DIST operate_ddl TO operator_1;
GRANT DIST operate_ddl TO operator_2;

6. If you need to add new developmers, repeat the following two steps.
‑‑ Create new user.
CREATE DISTUSER new_developer IDENTIFIED BY '123456';
‑‑ Authorize
GRANT DIST develop_dml TO new_developer;

7. If you need to add new operation andmaintenance users, repeat the following two steps.

351



Beijing SphereEx Technology Co., Ltd.

‑‑ Create new user.
CREATE DISTUSER new_operator IDENTIFIED BY '123456';
‑‑ Authorize
GRANT DIST operate_ddl TO new_operator;

9.2 Data Sharding

Scenarios
In the context of the current Internet era, business data shows a rapid growth trend. In the case of the storage and ac‑
cess ofmassive data, there aremany problems in the solution of single node storage of traditional relational database.
It is difficult tomeet the scenario ofmassive data in terms of performance, availability and operation andmaintenance
cost. Data sharding can split the data in a single database into multiple databases or tables according to a certain di‑
mension, so as to improve performance and availability.
Prerequisites
TakeDBPlusEngine‑Proxy as anexample, downloadandunzip theproxy, refer to the following configuration, configure
the corresponding configuration file in the conf directory, and then start the proxy.
Configuration Example
config‑sharding.yaml
rules:
‑ !SHARDING
tables:
t_order:
databaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: database_inline

tableStrategy:
standard:
shardingColumn: order_id
shardingAlgorithmName: table_inline

shardingAlgorithms:
database_inline:
type: INLINE
props:
algorithm‑expression: ds_${user_id % 2}

table_inline:
type: INLINE
props:
algorithm‑expression: t_order_${order_id % 2}

Relevant Reference
Sharding

352



Beijing SphereEx Technology Co., Ltd.

9.3 Distributed Transaction

Scenarios
The DBPlusEngine distributed database solution provides support for distributed transactions, with commonly used
modes being XA and BASE. Distributed transactions provide the semantics of final consistency. In XA mode, if the
isolation level of storage DB is serializable, it can achieve strong consistency semantics. Here is how to use XA.
Prerequisites
Taking DBPlusEngine‑Proxy as an example, start by downloading and unzipping the proxy. Refer to the following con‑
figuration, configure the corresponding configuration file in the conf directory and start the proxy.
Configuration Example

■ Configuring with Atomikos
server.yaml
rules:
‑ !TRANSACTION
defaultType: XA
providerType: Atomikos

■ Configuring with Narayana
Because the Narayana configuration is complicated, DBPlusEngine‑Proxy provides automatic configuration. Now
users do not need to manually configure jbossts‑properties.xml configuration file.
DBPlusEnginewill automatically configureNarayana specified in server.yaml, and generate the corresponding jbossts‑
properties.xml configuration file.
server.yaml
rules:
‑ !TRANSACTION
defaultType: XA
providerType: Narayana

When Narayana is used as the XA transaction manager and the DB mode is configured to store XA recovery informa‑
tion, the DBPlusEngine‑Proxy supports transferring the unrecovered transactions on the failed proxy instance to other
proxies for recovery.
The configuration is as follows:
‑ !TRANSACTION
defaultType: XA
providerType: Narayana
props:
recoveryStoreUrl: jdbc:mysql://127.0.0.1:3306/jbossts?serverTimezone=UTC&useSSL=false&allowPublicKeyRetrieval=true
# mysql8 using com.mysql.cj.jdbc.MysqlDataSource
recoveryStoreDataSource: com.mysql.jdbc.jdbc2.optional.MysqlDataSource
recoveryStoreUser: databaseUser
recoveryStorePassword: databasePwd

353



Beijing SphereEx Technology Co., Ltd.

9.4 Read/Write Splitting

Scenarios
With the growth of business volume, many applications will encounter the bottleneck of database throughput. It is
difficult for a single database to carry a large number of concurrent queries andmodifications. Currently, the database
clusterwithprimary‑secondary configurationhasbecomeaneffective scheme. Primary‑secondary configuration, that
is, themaster database is responsible for transactional operations such as datawriting,modification anddeletion, and
the slave database is responsible for the database architecture of query operation. The database with master‑slave
configuration can limit the row lock brought by write operation to the master database, and support a large number
of queries through the slave database, so as to greatly improve the performance of the application. In addition, the
multi master andmulti slave database configuration can be adopted to ensure that the system is still available even if
the data node is down or even in the case of physical damage to the database.
The read/write splitting can seprately route query andwrite operations of different users to diffrent databases, so as to
improve the read andwrite performance of the database. Readwrite splitting supports load balancing strategy, which
can distribute requests evenly to different database nodes.
Prerequisites
TakeDBPlusEngine‑Proxy as anexample, downloadandunzip theproxy, refer to the following configuration, configure
the corresponding configuration file in the conf directory, and then start the proxy.
Configuration Example
config‑readwrite‑splitting.yaml
rules:
‑ !READWRITE_SPLITTING
dataSources:
pr_ds:
writeDataSourceName: write_ds
readDataSourceNames: [read_ds_0, read_ds_1]
loadBalancerName: weight_lb

loadBalancers:
weight_lb:
type: WEIGHT
props:
read_ds_0: 2
read_ds_1: 1

Relevant Reference
Readwrite‑splitting

9.5 Elastic Scaling

Scenarios
Efficient capacity expansion and contraction. Scalingmay be possible without moving any data. Shrinkingmay allow
you to move only the necessary portion of the data.
Prerequisites
Use the autoTables range sharding algorithm, for example: VOLUME_RANGE.
Procedure

1. Add a database resource.
REGISTER STORAGE UNIT ds_0 (
URL="jdbc:postgresql://host1:5432/scaling_ds_0",
USER="postgres",
PASSWORD="root",

354



Beijing SphereEx Technology Co., Ltd.

PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")
), ds_1 (
URL="jdbc:postgresql://host2:5432/scaling_ds_1",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

2. Create table rules.
CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="VOLUME_RANGE",PROPERTIES("range‑lower"="1","range‑upper"="100000000","sharding‑volume"="10000000")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

3. Create a new table.
CREATE TABLE t_order (order_id INTNOT NULL, user_id INTNOT NULL, status VARCHAR(45)NULL, PRIMARY KEY (order_id));

4. Insert into some data.
For example:
INSERT INTO t_order (order_id, user_id, status) VALUES
(1,2,'ok'),
(101,2,'ok'),
(201,2,'ok');

5. Add new database resources.
REGISTER STORAGE UNIT ds_2 (
URL="jdbc:postgresql://host3:5432/scaling_ds_10",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

6. Trigger scaling.
RESHARD TABLE t_order BY(
STORAGE_UNITS(ds_0,ds_1,ds_2),
SHARDING_COLUMN=order_id,
TYPE(NAME="VOLUME_RANGE",PROPERTIES("range‑lower"="1","range‑upper"="150000000","sharding‑volume"="10000000")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

Only new sub‑tables are created, no data is moved.

9.6 Data Encryption

Scenarios
With the spread of information technology, more and more companies realize the important value of data assets, re‑
sulting in data security being paidmore andmore attention. As an important means to protect data security, data en‑
cryption has naturally become the basic demand of various companies. Data encryption is a data protection method
that uses encryption rules to deform data to achieve the purpose of security control.
In reality, there are often two business scenarios of data encryption. One is that new businesses need data encryp‑
tion. Because they are new businesses, everything is new. Business teams often simply implement data encryption
based on the basic requirements of the company’s encryption. However, with the rapid development of business, the

355



Beijing SphereEx Technology Co., Ltd.

original encryption scheme is difficult to meet the requirements of new business scenarios, resulting in the need for
large‑scale transformation of business systems, and the cost of upgrading is huge. The other is the mature business
that has been launched and the data is stored in plaintext. Now that the company has the requirements of data en‑
cryption, it will involve the migration and encryption of old data (washing number) and the related transformation of
business SQL. The overall complexity is high. For the core business, it also needs to be transformedwithout shutdown,
whichwill involve the construction of pre release environment and the preparation of rollback scheme, whichwill cost
a lot.
Based on this background, SphereEx‑DBPlusEngine has proposed a complete, safe, transparent and low transforma‑
tion cost data encryption integration scheme tomeet the encryption and decryption needs of various companies from
the needs of the industry and the pain points of business transformation.
Prerequisites
TakeDBPlusEngine‑Proxy as anexample, downloadandunzip theproxy, refer to the following configuration, configure
the corresponding configuration file in the conf directory, and then start the proxy.
Configuration Example
config‑encrypt.yaml
‑!ENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes‑key‑value: 123456abc

tables:
t_user:
columns:
pwd:
cipherColumn: pwd_cipher
encryptorName: aes_encryptor

Relevant Reference
Encryption

9.7 Shadow DB

Scenarios
SphereEx‑DBPlusEngine focuses on solutions at the database level in the scenario of full link online pressure test.
Launch the shadow DB function of pressure test, with the help of the powerful SQL parsing ability of SphereEx‑
DBPlusEngine. Perform shadow judgment on executing SQL. At the same time, the shadow algorithm is combined
with flexible configuration. To meet the online pressure test requirements of complex business scenarios, the pres‑
sure test flow is routed to the shadow DB, and the online normal flow is routed to the production database.
Prerequisites
TakeDBPlusEngine‑Proxy as anexample, downloadandunzip theproxy, refer to the following configuration, configure
the corresponding configuration file in the conf directory, and then start the proxy.
Configuration Example
config‑shadow.yaml
rules:
‑ !SHADOW
dataSources:
shadowDataSource:
sourceDataSourceName: ds
shadowDataSourceName: ds_shadow

tables:

356



Beijing SphereEx Technology Co., Ltd.

t_user:
dataSourceNames:
‑ shadowDataSource
shadowAlgorithmNames:
‑ user_id_insert_value_match‑algorithm
‑ simple‑hint‑algorithm

shadowAlgorithms:
user_id_insert_value_match‑algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 1

simple‑hint‑algorithm:
type: SIMPLE_HINT
props:
foo: bar

‑ !SQL_PARSER
sqlCommentParseEnabled: true

Relevant Reference
Shadow DB

9.8 Cluster Deployment

Scenarios
Considering the deployment scenarios of users, SphereEx‑DBPlusEngine provides three operationmodes, and cluster
mode is one of them. Cluster mode is the recommended production deployment mode for SphereEx‑DBPlusEngine.
In the clustermode, the horizontal capacity expansion can be achieved by adding computing nodes. At the same time,
multi‑node deployment is also the basis to ensure the high availability of services.

■ Operation Mode
Clustermode is one of the operationmodes of SphereEx‑DBPlusEngine. Clustermode is applicable to the deployment
of production environment. In addition to cluster mode, SphereEx‑DBPlusEngine also provides memory mode and
stand‑alone mode, which are used for integration test and local development test respectively. Unlike stand‑alone
mode, memory mode does not persist any metadata and configuration information, all modifications take effect in
the current process. The operation mode of SphereEx‑DBPlusEngine covers all scenarios of users from development
to test and production deployment.

■ Registration Center
The registry center is the basis for the implementation of the cluster mode. SphereEx‑DBPlusEngine realizes the
sharing of metadata and configuration in the cluster environment by integrating the third‑party registry components
ZooKeeper and etcd. At the same time, with the help of the notification and coordination ability of the registry center,
it ensures the real‑time synchronization of the cluster when the shared data changes.
Prerequisites
TakeDBPlusEngine‑Proxy as anexample, downloadandunzip theproxy, refer to the following configuration, configure
the corresponding configuration file in the conf directory, and then start the proxy.
Configuration Example
If the cluster mode needs to be enabled in the production environment, it needs to be enabled by configuring mode
tag in server.yaml:
mode:
type: Cluster
repository:

357



Beijing SphereEx Technology Co., Ltd.

type: ZooKeeper
props:
namespace: governance_ds
server‑lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

overwrite: false

At the same time, when multiple compute nodes need to be added to the cluster, it is necessary to ensure that the
configurations of‘namespace’and‘server lists’are the same to ensure that these compute nodeswork in the same
cluster.
If users need to use local configuration to initialize or overwrite the configuration in the cluster, they can configure
‘overwrite: true’.

9.9 Proxy + LDAP & LDAPS Application Case

9.9.1 Background

SphereEx‑DBPlusEngine adds support for LDAP login authentication. The following application case shows the use
process of LDAP login authentication.
In the process of case display, Wireshark tool is used to capture packets to more vividly show the difference between
LDAP and LDAPS protocols.
LDAPS is an LDAP communication mode based on SSL/TLS.

9.9.2 Basic Environment

Name Version
MySQL 5.7 or 8.0
SphereEx DBPlusEngine 1.0
Wireshark 3.6
ApacheDS 2.0.0

■ config‑sharding‑databases.yaml
schemaName: sharding_db

dataSources:
ds_0:
url: jdbc:mysql://127.0.0.1:3306/demo_ds_0?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 10
minPoolSize: 1
ds_1:
url: jdbc:mysql://127.0.0.1:3306/demo_ds_1?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000

358



Beijing SphereEx Technology Co., Ltd.

maxPoolSize: 10
minPoolSize: 1

rules:
‑ !SHARDING
tables:
t_order:
actualDataNodes: ds_${0..1}.t_order
keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: database_inline

defaultTableStrategy:
none:
shardingAlgorithms:
database_inline:
type: INLINE
props:
algorithm‑expression: ds_${user_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

9.9.3 LDAP Server Configuration

Adopt Docker image of ApacheDS™: tremolosecurity/apacheds。
a. Pull image.

docker pull tremolosecurity/apacheds:latest

b. Generate SSL certificate.
Description page: https://directory.apache.org/apacheds/basic‑ug/3.3‑enabling‑ssl.html
Use keytool to generate the certificate according to the method in the page.
Take Common name as localhost as an example to generate two files:
.
├── localhost.ks
└── localhost.cer

Because the container used has special requirements for file names, rename localhost.ks as apacheds.jks.
.
├── apacheds.jks
└── localhost.cer

Note: The certificate file can be saved in any path, such as:
■ /Users/${yourname}/apacheds/apacheds.jks
■ /Users/${yourname}/apacheds/localhost.cer
c. Start container.

docker run ‑‑detach ‑‑rm ‑‑name apacheds \
‑p 10389:10389 \
‑p 10636:10636 \
‑v /Users/${yourname}/apacheds:/etc/apacheds \

359

https://directory.apache.org/apacheds/
https://hub.docker.com/r/tremolosecurity/apacheds
https://directory.apache.org/apacheds/basic-ug/3.3-enabling-ssl.html


Beijing SphereEx Technology Co., Ltd.

‑e APACHEDS_ROOT_PASSWORD=secret \
‑e APACHEDS_TLS_KS_PWD=secret \
tremolosecurity/apacheds:latest

Notes:
■ The container maps two ports, of which 10389 is used as LDAP non encrypted connection and 10636 is used as

LDAPS encrypted connection.
■ ApacheDS service contains a default user uid=admin, ou=system, which can be accessed through the parameter

APACHEDS_ROOT_PASSWORD and its password is secret.
After starting the operation, check whether the log is normal:
docker logs ‑f apacheds

d. ldapsearch test
The ldapsearch command can easily initiate access to the LDAP service and verify whether the LDAP service is normal:
docker exec ‑it apacheds ldapsearch ‑x ‑H ldap://localhost:10389 ‑b ou=system ‑D "uid=admin,ou=system" ‑w secret

At this point, the LDAP server configuration is complete.

9.9.4 JDK Import Certificate

Since the LDAP server uses a self signed certificate, you need to import it into the keystore of JRE before accessing the
client.
Note: During the import process, you need to enter the key of the certificate: secret.
keytool ‑import ‑alias localhost ‑keystore $JAVA_HOME/jre/lib/security/cacerts ‑file /Users/${yourname}/apacheds/localhost.cer

9.9.5 Proxy‑LDAP Test

a. server.yaml
authority:
users:
‑ user: root@%
‑ user: admin
‑ user: sharding
authenticators:
auth_ldap:
type: LDAP
props:
ldap_server_url: ldap://localhost:10389
ldap_dn_template: uid={0},ou=system

defaultAuthenticator: auth_ldap

b. Start Proxy.
c. Start Wireshark and start capturing packets on port 10389.

360



Beijing SphereEx Technology Co., Ltd.

d. MySQL client login test.
Note that the parameter –enable‑cleartext‑plugin is specified.
# Since there is only one admin user in the LDAP server, use admin to log in.
# If you try another user, the result is login failure.
mysql ‑h 127.0.0.1 ‑P 3307 ‑A ‑u admin ‑p ‑‑enable‑cleartext‑plugin

Login succeeded after entering the password secret:

e. View packet capture data.
From the captured TCP packet, we can easily find amessage containing user DN and password:

361



Beijing SphereEx Technology Co., Ltd.

f. Summary
From server.yaml configuration, we can see that under the premise of existing LDAP server, using LDAP for login au‑
thentication is not complicated, and only simple configuration is required.
On the other hand, because LDAP protocol is unencrypted, there is a risk of password disclosure when using LDAP
authentication in public networks.

9.9.6 Proxy‑LDAPS Test

a. server.yaml
The only difference from the LDAP case is that the URL of the LDAP server is changed.
authority:
users:
‑ user: root@%
‑ user: admin
‑ user: sharding
authenticators:
auth_ldap:
type: LDAP
props:
ldap_server_url: ldaps://localhost:10636
ldap_dn_template: uid={0},ou=system

defaultAuthenticator: auth_ldap

b. Start Proxy .
c. Start Wireshark and start capturing packets on port 10636.

362



Beijing SphereEx Technology Co., Ltd.

d. MySQL client login test.
Note: need to specify the parameter –enable‑cleartext‑plugin.
# Since there is only one admin user in the LDAP server, use admin to log in.
# If you try another user, the result is login failure.
mysql ‑h 127.0.0.1 ‑P 3307 ‑A ‑u admin ‑p ‑‑enable‑cleartext‑plugin

Login succeeded after entering the password secret:

e. View packet capture data.
It can be seen from the data packet that TLS communication has been established between proxy and LDAP server,
and the content of communication cannot be obtained through packet capturing:

363



Beijing SphereEx Technology Co., Ltd.

f. Summary
SSL/TLS encryption can effectively protect user login information. The SphereEx‑DBPlusEngine is very friendly to
LDAPS. You can switch from LDAP to LDAPS by importing certificates and replacing URLs.

364



Beijing SphereEx Technology Co., Ltd.

10
Test Manual

DBPlusEngine provides test engines for integration, module and performance.

10.1 Integration Test

Provide point to point test which connect real DBPlusEngine and database instances.
They define SQLs in XML files, engine run for each database independently. All test engines designed to modify the
configuration files to execute all assertionswithout any Java codemodification. It does not dependon any third‑party
environment, DBPlusEngine‑Proxy and database used for testing are provided by docker image.

10.2 Module Test

Provide module test engine for complex modules.
They define SQLs in XMLfiles, engine run for eachdatabase independently too. It includes SQLparser andSQL rewriter
modules.

10.3 Performance Test

Provide multiple performance test methods, includes Sysbench, JMH or TPCC and so on.

10.4 Integration Test

The SQL parsing unit test covers both SQL placeholder and literal dimension. Integration test can be further divided
into two dimensions of strategy and JDBC. The former one includes strategies as Sharding, table Sharding, database
Sharding, and read/write splitting while the latter one includes Statement and PreparedStatement.
Therefore, one SQL can drive 5 kinds of database parsing * 2 kinds of parameter transmission modes + 5 kinds of
databases * 5 kinds of Sharding strategies * 2 kinds of JDBC operation modes = 60 test cases, to enable DBPlusEngine
to achieve the pursuit of high quality.

365



Beijing SphereEx Technology Co., Ltd.

10.4.1 Process

The Parameterized in JUnit will collect all test data, and pass to test method to assert one by one. The process of
handling test data is just like a leaking hourglass:

Configuration

■ environment type
• /shardingsphere‑integration‑test‑suite/src/test/resources/env‑native.properties
• /shardingsphere‑integration‑test‑suite/src/test/resources/env/SQL‑TYPE/dataset.xml
• /shardingsphere‑integration‑test‑suite/src/test/resources/env/SQL‑TYPE/schema.xml

■ test case type
• /shardingsphere‑integration‑test‑suite/src/test/resources/cases/SQL‑TYPE/SQL‑TYPE‑integration‑test‑

cases.xml
• /shardingsphere‑integration‑test‑suite/src/test/resources/cases/SQL‑TYPE/dataset/FEATURE‑TYPE/*.xml

■ sql‑case
• /sharding‑sql‑test/src/main/resources/sql/sharding/SQL‑TYPE/*.xml

Environment Configuration

Integration test depends on existed database environment, developers need to setup the configuration file for corre‑
sponding database to test:
Firstly, setup configuration file /shardingsphere‑integration‑test‑suite/src/test/resources/env‑native.properties, for
example:
# the switch for PK, concurrent, column index testing and so on
it.run.additional.cases=false

# test scenarios, could definemultiple rules
it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

# database type, could definemultiple databases(H2,MySQL,Oracle,SQLServer,PostgreSQL)
it.cluster.databases=MySQL,PostgreSQL

# MySQL configuration
it.mysql.host=127.0.0.1
it.mysql.port=13306
it.mysql.username=root
it.mysql.password=root

## PostgreSQL configuration
it.postgresql.host=db.psql
it.postgresql.port=5432
it.postgresql.username=postgres
it.postgresql.password=postgres

## SQLServer configuration
it.sqlserver.host=db.mssql
it.sqlserver.port=1433
it.sqlserver.username=sa
it.sqlserver.password=Jdbc1234

## Oracle configuration
it.oracle.host=db.oracle
it.oracle.port=1521

366



Beijing SphereEx Technology Co., Ltd.

it.oracle.username=jdbc
it.oracle.password=jdbc

Secondly, setup configuration file /shardingsphere‑integration‑test‑suite/src/test/resources/env/SQL‑TYPE/dataset.
xml. Developers can set upmetadata and expected data to start the data initialization in dataset.xml. For example:
<dataset>
<metadata data‑nodes="tbl.t_order_${0..9}">
<column name="order_id" type="numeric" />
<column name="user_id" type="numeric" />
<column name="status" type="varchar" />

</metadata>
<row data‑node="tbl.t_order_0" values="1000, 10, init" />
<row data‑node="tbl.t_order_1" values="1001, 10, init" />
<row data‑node="tbl.t_order_2" values="1002, 10, init" />
<row data‑node="tbl.t_order_3" values="1003, 10, init" />
<row data‑node="tbl.t_order_4" values="1004, 10, init" />
<row data‑node="tbl.t_order_5" values="1005, 10, init" />
<row data‑node="tbl.t_order_6" values="1006, 10, init" />
<row data‑node="tbl.t_order_7" values="1007, 10, init" />
<row data‑node="tbl.t_order_8" values="1008, 10, init" />
<row data‑node="tbl.t_order_9" values="1009, 10, init" />

</dataset>

Developers can customize DDL to create databases and tables in schema.xml.

Assertion Configuration

So far we have confirmed what kind of SQL execute in which environment in upon configuration, here we define the
data for assert. There are two kinds of config for assert, one is at /shardingsphere‑integration‑test‑suite/src/test/
resources/cases/SQL‑TYPE/SQL‑TYPE‑integration‑test‑cases.xml. This file just like an index, defined the sql, param‑
eters and expected index position for execution. the SQL is the value for sql‑case‑id. For example:
<integration‑test‑cases>
<dml‑test‑case sql‑case‑id="insert_with_all_placeholders">
<assertion parameters="1:int, 1:int, insert:String" expected‑data‑file="insert_for_order_1.xml" />
<assertion parameters="2:int, 2:int, insert:String" expected‑data‑file="insert_for_order_2.xml" />

</dml‑test‑case>
</integration‑test‑cases>

Another kind of config for assert is the data, as known as the corresponding expected‑data‑file in
SQL‑TYPE‑integration‑test‑cases.xml, which is at
/shardingsphere‑integration‑test‑suite/src/test/resources/cases/SQL‑TYPE/dataset/FEATURE‑TYPE/*.xml.
This file is very like the dataset.xml mentioned before, and the difference is that expected‑data‑file contains some
other assert data, such as the return value after a sql execution. For examples:

<dataset update‑count="1">
<metadata data‑nodes="db_${0..9}.t_order">
<column name="order_id" type="numeric" />
<column name="user_id" type="numeric" />
<column name="status" type="varchar" />

</metadata>
<row data‑node="db_0.t_order" values="1000, 10, update" />
<row data‑node="db_0.t_order" values="1001, 10, init" />
<row data‑node="db_0.t_order" values="2000, 20, init" />
<row data‑node="db_0.t_order" values="2001, 20, init" />

</dataset>

367



Beijing SphereEx Technology Co., Ltd.

Util now, all config files are ready, just launch the corresponding test case is fine.With no need tomodify any Java code,
only set up some config files. This will reduce the difficulty for DBPlusEngine testing.

10.4.2 Notice

1. If Oracle needs to be tested, please add Oracle driver dependencies to the pom.xml.
2. 10 splitting‑databases and 10 splitting‑tables are used in the integrated test to ensure the test data is full, so it

will take a relatively long time to run the test cases.

10.5 Performance Test

Provides result for each performance test tools.

10.5.1 SysBench DBPlusEngine‑Proxy Empty Rule Performance Test

Objectives

Compare theperformanceofDBPlusEngine‑ProxyandMySQL1. Sysbenchdirectly carries out stress testingon theper‑
formance of MySQL. 2. Sysbench directly carries out stress testing on DBPlusEngine‑Proxy (directly connect MySQL).
Based on the above two groups of experiments, we can figure out the loss of MySQL when using DBPlusEngine‑Proxy.

Set up the test environment

Server information

1. Db‑related configuration: it is recommended that the memory is larger than the amount of data to be tested, so
that the data is stored in the memory hot block, and the rest can be adjusted.

2. DBPlusEngine‑Proxy‑related configuration: it is recommended to use a high‑performance, multi‑core CPU, and
other configurations can be customized.

3. Disable swap partitions on all servers involved in the stress testing.

Database

[mysqld]
innodb_buffer_pool_size=${MORE_THAN_DATA_SIZE}
innodb‑log‑file‑size=3000000000
innodb‑log‑files‑in‑group=5
innodb‑flush‑log‑at‑trx‑commit=0
innodb‑change‑buffer‑max‑size=40
back_log=900
innodb_max_dirty_pages_pct=75
innodb_open_files=20480
innodb_buffer_pool_instances=8
innodb_page_cleaners=8
innodb_purge_threads=2
innodb_read_io_threads=8
innodb_write_io_threads=8
table_open_cache=102400
log_timestamps=system
thread_cache_size=16384

368



Beijing SphereEx Technology Co., Ltd.

transaction_isolation=READ‑COMMITTED

# Appropriate tuning can be considered to magnify the underlying DB performance, so that the experiment doesn't subject to DB
performance bottleneck.

Stress testing tool

Refer to sysbench’s GitHub

DBPlusEngine‑Proxy

bin/start.sh

‑Xmx16g ‑Xms16g ‑Xmn8g # Adjust JVM parameters

config.yaml

databaseName: sharding_db

dataSources:
ds_0:
url: jdbc:mysql://***.***.***.***:****/test?serverTimezone=UTC&useSSL=false # Parameters can be adjusted appropriately
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200 # Themaximum ConnPool is set to ${the number of concurrencies in stress testing}, which is consistent with

the number of concurrencies in stress testing to shield the impact of additional connections in the process of stress testing.
minPoolSize: 200 # Theminimum ConnPool is set to ${the number of concurrencies in stress testing}, which is consistent with

the number of concurrencies in stress testing to shield the impact of connections initialization in the process of stress testing.

rules: []

Test phase

Environment setup

sysbench oltp_read_write ‑‑mysql‑host=${DB_IP} ‑‑mysql‑port=${DB_PORT} ‑‑mysql‑user=${USER} ‑‑mysql‑password=${PASSWD}
‑‑mysql‑db=test ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=100 ‑‑threads=200 cleanup
sysbench oltp_read_write ‑‑mysql‑host=${DB_IP} ‑‑mysql‑port=${DB_PORT} ‑‑mysql‑user=${USER} ‑‑mysql‑password=${PASSWD}
‑‑mysql‑db=test ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=100 ‑‑threads=200 prepare

369

https://github.com/akopytov/sysbench


Beijing SphereEx Technology Co., Ltd.

Stress testing command

sysbench oltp_read_write ‑‑mysql‑host=${DB/PROXY_IP} ‑‑mysql‑port=${DB/PROXY_PORT} ‑‑mysql‑user=${USER} ‑‑mysql‑
password=${PASSWD} ‑‑mysql‑db=test ‑‑tables=10 ‑‑table‑size=1000000 ‑‑report‑interval=10 ‑‑time=100 ‑‑threads=200 run

Stress testing report analysis

sysbench 1.0.20 (using bundled LuaJIT 2.1.0‑beta2)
Running the test with following options:
Number of threads: 200
Report intermediate results every 10 second(s)
Initializing random number generator from current time
Initializing worker threads...
Threads started!
# Report test results every 10 seconds, and the number of tps, reads per second, writes per second, and the total response time of
more than 95th percentile.
[ 10s ] thds: 200 tps: 11161.70 qps: 223453.06 (r/w/o: 156451.76/44658.51/22342.80) lat (ms,95%): 27.17 err/s: 0.00 reconn/s: 0.00
...
[ 120s ] thds: 200 tps: 11731.00 qps: 234638.36 (r/w/o: 164251.67/46924.69/23462.00) lat (ms,95%): 24.38 err/s: 0.00 reconn/s: 0.00
SQL statistics:
queries performed:
read: 19560590 # number of reads
write: 5588740 # number of writes
other: 27943700 # number of other operations (COMMIT etc.)
total: 27943700 # the total number

transactions: 1397185 (11638.59 per sec.) # number of transactions (per second)
queries: 27943700 (232771.76 per sec.) # number of statements executed (per second)
ignored errors: 0 (0.00 per sec.) # number of ignored errors (per second)
reconnects: 0 (0.00 per sec.) # number of reconnections (per second)

General statistics:
total time: 120.0463s # total time
total number of events: 1397185 # toal number of transactions

Latency (ms):
min: 5.37 # minimum latency
avg: 17.13 # average latency
max: 109.75 # maximum latency
95th percentile: 24.83 # average response time of over 95th percentile.
sum: 23999546.19

Threads fairness:
events (avg/stddev): 6985.9250/34.74 # On average, 6985.9250 events were completed per thread, and the

standard deviation is 34.74
execution time (avg/stddev): 119.9977/0.01 # The average time of each thread is 119.9977 seconds, and the

standard deviation is 0.01

Noticeable features

1. CPU utilization ratio of the server where DBPlusEngine‑Proxy resides. It is better to make full use of CPU.
2. I/O of the server disk where the DB resides. The lower the physical read value is, the better.
3. Network IO of the server involved in the stress testing.

370



Beijing SphereEx Technology Co., Ltd.

10.5.2 BenchmarkSQL DBPlusEngine‑Proxy Sharding Performance Test

Objective

BenchmarkSQL tool is used to test the sharding performance of DBPlusEngine‑Proxy.

Method

DBPlusEngine‑Proxy supports the TPC‑C test through BenchmarkSQL 5.0. In addition to the content described in this
document, BenchmarkSQL is operated according to the original document HOW‑TO‑RUN.txt.

Fine tuning to test tools

Unlike stand‑alone database stress testing, distributed database solutions inevitably face trade‑offs in functions.
It is recommended to make the following adjustments when using BenchmarkSQL to carry out stress testing on
DBPlusEngine‑Proxy.

Remove the foreign key and extraHistID

Modify run/runDatabaseBuild.sh in the BenchmarkSQL directory at line 17.
Before modification:
AFTER_LOAD="indexCreates foreignKeys extraHistID buildFinish"

After modification:
AFTER_LOAD="indexCreates buildFinish"

Stress testing environment or parameter recommendations

Note: None of the parameters mentioned in this section are absolute values and need to be adjusted based on
actual test results.

It is recommended to run DBPlusEngine using Java 17

DBPlusEngine can be compiled using Java 8.
When using Java 17, maximize the DBPlusEngine performance by default.

DBPlusEngine data sharding recommendations

The data sharding of BenchmarkSQL can use the warehouse id in each table as the sharding key.
One of the tables bmsql_item has no warehouse id and has a fixed data volume of 100,000 rows: ‑ You can take i_id as
a sharding key. However, the same Proxy connection may hold connections to multiple different data sources at the
same time. ‑ Or you can give up sharding and store it in a single data source. But a data source may be under great
pressure. ‑ Or you may choose range‑based sharding for i_id, such as 1‑50000 for data source 0 and 50001‑100000 for
data source 1.
BenchmarkSQL has the following SQL involving multiple tables:

371

https://sourceforge.net/projects/benchmarksql/


Beijing SphereEx Technology Co., Ltd.

SELECT c_discount, c_last, c_credit, w_tax
FROM bmsql_customer
JOIN bmsql_warehouseON (w_id = c_w_id)

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (
SELECTmax(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
)

If thewarehouse id is used as the sharding key, the tables involved in the aboveSQL canbe configuredas bindingTable:
rules:
‑ !SHARDING
bindingTables:
‑ bmsql_warehouse, bmsql_customer
‑ bmsql_stock, bmsql_district, bmsql_order_line

For the data sharding configuration with warehouse id as the sharding key, refer to the appendix of this document.

PostgreSQL JDBC URL parameter recommendations

Adjust the JDBC URL in the configuration file used by BenchmarkSQL, that is, the value of the parameter name conn: ‑
Adding the parameter defaultRowFetchSize=50may reduce the number of fetch for multi‑row result sets. You need to
increase or decrease the number according to actual test results. ‑ Adding the parameter reWriteBatchedInserts=true
may reduce the time spent on bulk inserts, such as preparing data or bulk inserts for the NewOrder business. Whether
to enable the operation depends on actual test results.
props.pg file excerpt. It is suggested to change the parameter value of conn in line 3.
db=postgres
driver=org.postgresql.Driver
conn=jdbc:postgresql://localhost:5432/postgres?defaultRowFetchSize=50&reWriteBatchedInserts=true
user=benchmarksql
password=PWbmsql

DBPlusEngine Proxy server.yaml parameter recommendations

The default value of proxy‑backend‑query‑fetch‑size is ‑1. Changing it to about 50 can minimize the number of fetch
for multi‑row result sets.
Thedefault valueof proxy‑frontend‑executor‑size is CPU * 2 and canbe reduced to about CPU * 0.5 basedonactual test
results. If NUMA is involved, set this parameter to the number of physical cores per CPU based on actual test results.
server.yaml file excerpt:
props:
proxy‑backend‑query‑fetch‑size: 50
# proxy‑frontend‑executor‑size: 32 # 4*32C aarch64
# proxy‑frontend‑executor‑size: 12 # 2*12C24T x86

372



Beijing SphereEx Technology Co., Ltd.

Appendix

BenchmarkSQL data sharding reference configuration

Adjust pool size according to the actual stress testing process.
databaseName: bmsql_sharding
dataSources:
ds_0:
url: jdbc:postgresql://db0.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000
ds_1:
url: jdbc:postgresql://db1.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000
ds_2:
url: jdbc:postgresql://db2.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000
ds_3:
url: jdbc:postgresql://db3.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

rules:
‑ !SHARDING
bindingTables:
‑ bmsql_warehouse, bmsql_customer
‑ bmsql_stock, bmsql_district, bmsql_order_line
defaultDatabaseStrategy:
none:
defaultTableStrategy:
none:
keyGenerators:
snowflake:
type: SNOWFLAKE

tables:
bmsql_config:
actualDataNodes: ds_0.bmsql_config

bmsql_warehouse:
actualDataNodes: ds_${0..3}.bmsql_warehouse
databaseStrategy:

373



Beijing SphereEx Technology Co., Ltd.

standard:
shardingColumn: w_id
shardingAlgorithmName: mod_4

bmsql_district:
actualDataNodes: ds_${0..3}.bmsql_district
databaseStrategy:
standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_4

bmsql_customer:
actualDataNodes: ds_${0..3}.bmsql_customer
databaseStrategy:
standard:
shardingColumn: c_w_id
shardingAlgorithmName: mod_4

bmsql_item:
actualDataNodes: ds_${0..3}.bmsql_item
databaseStrategy:
standard:
shardingColumn: i_id
shardingAlgorithmName: mod_4

bmsql_history:
actualDataNodes: ds_${0..3}.bmsql_history
databaseStrategy:
standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_4

bmsql_oorder:
actualDataNodes: ds_${0..3}.bmsql_oorder
databaseStrategy:
standard:
shardingColumn: o_w_id
shardingAlgorithmName: mod_4

bmsql_stock:
actualDataNodes: ds_${0..3}.bmsql_stock
databaseStrategy:
standard:
shardingColumn: s_w_id
shardingAlgorithmName: mod_4

bmsql_new_order:
actualDataNodes: ds_${0..3}.bmsql_new_order
databaseStrategy:
standard:
shardingColumn: no_w_id
shardingAlgorithmName: mod_4

bmsql_order_line:
actualDataNodes: ds_${0..3}.bmsql_order_line
databaseStrategy:
standard:
shardingColumn: ol_w_id
shardingAlgorithmName: mod_4

shardingAlgorithms:
mod_4:
type: MOD
props:

374



Beijing SphereEx Technology Co., Ltd.

sharding‑count: 4

BenchmarkSQL 5.0 PostgreSQL statement list

Create tables

create table bmsql_config (
cfg_name varchar(30) primary key,
cfg_value varchar(50)
);

create table bmsql_warehouse (
w_id integer not null,
w_ytd decimal(12,2),
w_tax decimal(4,4),
w_name varchar(10),
w_street_1 varchar(20),
w_street_2 varchar(20),
w_city varchar(20),
w_state char(2),
w_zip char(9)
);

create table bmsql_district (
d_w_id integer not null,
d_id integer not null,
d_ytd decimal(12,2),
d_tax decimal(4,4),
d_next_o_id integer,
d_name varchar(10),
d_street_1 varchar(20),
d_street_2 varchar(20),
d_city varchar(20),
d_state char(2),
d_zip char(9)
);

create table bmsql_customer (
c_w_id integer not null,
c_d_id integer not null,
c_id integer not null,
c_discount decimal(4,4),
c_credit char(2),
c_last varchar(16),
c_first varchar(16),
c_credit_lim decimal(12,2),
c_balance decimal(12,2),
c_ytd_payment decimal(12,2),
c_payment_cnt integer,
c_delivery_cnt integer,
c_street_1 varchar(20),
c_street_2 varchar(20),
c_city varchar(20),
c_state char(2),
c_zip char(9),
c_phone char(16),
c_since timestamp,
c_middle char(2),
c_data varchar(500)
);

375



Beijing SphereEx Technology Co., Ltd.

create sequence bmsql_hist_id_seq;

create table bmsql_history (
hist_id integer,
h_c_id integer,
h_c_d_id integer,
h_c_w_id integer,
h_d_id integer,
h_w_id integer,
h_date timestamp,
h_amount decimal(6,2),
h_data varchar(24)
);

create table bmsql_new_order (
no_w_id integer not null,
no_d_id integer not null,
no_o_id integer not null
);

create table bmsql_oorder (
o_w_id integer not null,
o_d_id integer not null,
o_id integer not null,
o_c_id integer,
o_carrier_id integer,
o_ol_cnt integer,
o_all_local integer,
o_entry_d timestamp
);

create table bmsql_order_line (
ol_w_id integer not null,
ol_d_id integer not null,
ol_o_id integer not null,
ol_number integer not null,
ol_i_id integer not null,
ol_delivery_d timestamp,
ol_amount decimal(6,2),
ol_supply_w_id integer,
ol_quantity integer,
ol_dist_info char(24)
);

create table bmsql_item (
i_id integer not null,
i_name varchar(24),
i_price decimal(5,2),
i_data varchar(50),
i_im_id integer
);

create table bmsql_stock (
s_w_id integer not null,
s_i_id integer not null,
s_quantity integer,
s_ytd integer,
s_order_cnt integer,
s_remote_cnt integer,
s_data varchar(50),
s_dist_01 char(24),
s_dist_02 char(24),
s_dist_03 char(24),
s_dist_04 char(24),

376



Beijing SphereEx Technology Co., Ltd.

s_dist_05 char(24),
s_dist_06 char(24),
s_dist_07 char(24),
s_dist_08 char(24),
s_dist_09 char(24),
s_dist_10 char(24)
);

Create indexes

alter table bmsql_warehouse add constraint bmsql_warehouse_pkey
primary key (w_id);

alter table bmsql_district add constraint bmsql_district_pkey
primary key (d_w_id, d_id);

alter table bmsql_customer add constraint bmsql_customer_pkey
primary key (c_w_id, c_d_id, c_id);

create index bmsql_customer_idx1
on bmsql_customer (c_w_id, c_d_id, c_last, c_first);

alter table bmsql_oorder add constraint bmsql_oorder_pkey
primary key (o_w_id, o_d_id, o_id);

create unique index bmsql_oorder_idx1
on bmsql_oorder (o_w_id, o_d_id, o_carrier_id, o_id);

alter table bmsql_new_order add constraint bmsql_new_order_pkey
primary key (no_w_id, no_d_id, no_o_id);

alter table bmsql_order_line add constraint bmsql_order_line_pkey
primary key (ol_w_id, ol_d_id, ol_o_id, ol_number);

alter table bmsql_stock add constraint bmsql_stock_pkey
primary key (s_w_id, s_i_id);

alter table bmsql_item add constraint bmsql_item_pkey
primary key (i_id);

NewOrder business

stmtNewOrderSelectWhseCust
UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderSelectDist
SELECT d_tax, d_next_o_id
FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?
FOR UPDATE

stmtNewOrderUpdateDist
UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

377



Beijing SphereEx Technology Co., Ltd.

stmtNewOrderInsertOrder
INSERT INTO bmsql_oorder (
o_id, o_d_id, o_w_id, o_c_id, o_entry_d,
o_ol_cnt, o_all_local)

VALUES (?, ?, ?, ?, ?, ?, ?)

stmtNewOrderInsertNewOrder
INSERT INTO bmsql_new_order (
no_o_id, no_d_id, no_w_id)

VALUES (?, ?, ?)

stmtNewOrderSelectStock
SELECT s_quantity, s_data,

s_dist_01, s_dist_02, s_dist_03, s_dist_04,
s_dist_05, s_dist_06, s_dist_07, s_dist_08,
s_dist_09, s_dist_10

FROM bmsql_stock
WHERE s_w_id = ? AND s_i_id = ?
FOR UPDATE

stmtNewOrderSelectItem
SELECT i_price, i_name, i_data
FROM bmsql_item
WHERE i_id = ?

stmtNewOrderUpdateStock
UPDATE bmsql_stock
SET s_quantity = ?, s_ytd = s_ytd + ?,
s_order_cnt = s_order_cnt + 1,
s_remote_cnt = s_remote_cnt + ?

WHERE s_w_id = ? AND s_i_id = ?

stmtNewOrderInsertOrderLine
INSERT INTO bmsql_order_line (
ol_o_id, ol_d_id, ol_w_id, ol_number,
ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_dist_info)

VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)

Payment business

stmtPaymentSelectWarehouse
SELECTw_name, w_street_1, w_street_2, w_city,

w_state, w_zip
FROM bmsql_warehouse
WHEREw_id = ?

stmtPaymentSelectDistrict
SELECT d_name, d_street_1, d_street_2, d_city,

d_state, d_zip
FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?

378



Beijing SphereEx Technology Co., Ltd.

stmtPaymentSelectCustomerListByLast
SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtPaymentSelectCustomer
SELECT c_first, c_middle, c_last, c_street_1, c_street_2,

c_city, c_state, c_zip, c_phone, c_since, c_credit,
c_credit_lim, c_discount, c_balance

FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?
FOR UPDATE

stmtPaymentSelectCustomerData
SELECT c_data
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateWarehouse
UPDATE bmsql_warehouse
SETw_ytd = w_ytd + ?
WHEREw_id = ?

stmtPaymentUpdateDistrict
UPDATE bmsql_district
SET d_ytd = d_ytd + ?
WHERE d_w_id = ? AND d_id = ?

stmtPaymentUpdateCustomer
UPDATE bmsql_customer
SET c_balance = c_balance ‑ ?,
c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateCustomerWithData
UPDATE bmsql_customer
SET c_balance = c_balance ‑ ?,
c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1,
c_data = ?

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentInsertHistory
INSERT INTO bmsql_history (
h_c_id, h_c_d_id, h_c_w_id, h_d_id, h_w_id,
h_date, h_amount, h_data)

VALUES (?, ?, ?, ?, ?, ?, ?, ?)

379



Beijing SphereEx Technology Co., Ltd.

Order Status business

stmtOrderStatusSelectCustomerListByLast
SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtOrderStatusSelectCustomer
SELECT c_first, c_middle, c_last, c_balance
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtOrderStatusSelectLastOrder
SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (
SELECTmax(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

)

stmtOrderStatusSelectOrderLine
SELECT ol_i_id, ol_supply_w_id, ol_quantity,

ol_amount, ol_delivery_d
FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?
ORDER BY ol_w_id, ol_d_id, ol_o_id, ol_number

Stock level business

stmtStockLevelSelectLow
SELECT count(*) AS low_stock FROM (
SELECT s_w_id, s_i_id, s_quantity
FROM bmsql_stock
WHERE s_w_id = ? AND s_quantity < ? AND s_i_id IN (
SELECT ol_i_id
FROM bmsql_district
JOIN bmsql_order_lineON ol_w_id = d_w_id
AND ol_d_id = d_id
AND ol_o_id >= d_next_o_id ‑ 20
AND ol_o_id < d_next_o_id
WHERE d_w_id = ? AND d_id = ?

)
) AS L

380



Beijing SphereEx Technology Co., Ltd.

Delivery BG business

stmtDeliveryBGSelectOldestNewOrder
SELECT no_o_id
FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ?
ORDER BY no_o_id ASC

stmtDeliveryBGDeleteOldestNewOrder
DELETE FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ? AND no_o_id = ?

stmtDeliveryBGSelectOrder
SELECT o_c_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGUpdateOrder
UPDATE bmsql_oorder
SET o_carrier_id = ?
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGSelectSumOLAmount
SELECT sum(ol_amount) AS sum_ol_amount
FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateOrderLine
UPDATE bmsql_order_line
SET ol_delivery_d = ?
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateCustomer
UPDATE bmsql_customer
SET c_balance = c_balance + ?,
c_delivery_cnt = c_delivery_cnt + 1

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

381



Beijing SphereEx Technology Co., Ltd.

10.6 Module Test

Provides test engine with each complex modules.

10.6.1 SQL Parser Test

Prepare Data

Unlike the Integration test, the SQL parse test does not need a specific database environment, just define the sql to
parse, and the assert data:

SQL Data

Asmentioned sql‑case‑id in Integration test，test‑case‑id could be shared in different module to test, and the file is at
shardingsphere‑sql‑parser/shardingsphere‑sql‑parser‑test/src/main/resources/sql/supported/${SQL‑TYPE}/*.xml

Assert Data

The assert data is at shardingsphere‑sql‑parser/shardingsphere‑sql‑parser‑test/src/main/resources/case/
${SQL‑TYPE}/*.xml in that xml file, it could assert against the table name, token or sql condition and so on. For
example:
<parser‑result‑sets>
<parser‑result sql‑case‑id="insert_with_multiple_values">
<tables>
<table name="t_order" />

</tables>
<tokens>
<table‑token start‑index="12" table‑name="t_order" length="7" />

</tokens>
<sharding‑conditions>
<and‑condition>
<condition column‑name="order_id" table‑name="t_order" operator="EQUAL">
<value literal="1" type="int" />

</condition>
<condition column‑name="user_id" table‑name="t_order" operator="EQUAL">
<value literal="1" type="int" />

</condition>
</and‑condition>
<and‑condition>
<condition column‑name="order_id" table‑name="t_order" operator="EQUAL">
<value literal="2" type="int" />

</condition>
<condition column‑name="user_id" table‑name="t_order" operator="EQUAL">
<value literal="2" type="int" />

</condition>
</and‑condition>

</sharding‑conditions>
</parser‑result>

</parser‑result‑sets>

When these configs are ready, launch the test engine in shardingsphere‑sql‑parser/shardingsphere‑sql‑parser‑test to
test SQL parse.

382



Beijing SphereEx Technology Co., Ltd.

10.6.2 SQL Rewrite Test

Target

Facing logic databases and tables cannot be executed directly in actual databases. SQL rewrite is used to rewrite logic
SQL into rightly executableones inactual databases, including twoparts, correctness rewrite andoptimization rewrite.
Rewrite tests are for these targets.

Test

The rewrite tests are in the test folder under sharding‑core/sharding‑core‑rewrite. Followings are the main part for
rewrite tests:

■ test engine
■ environment configuration
■ assert data

Test engine is the entrance of rewrite tests, just like other test engines, through Junit Parameterized, read every and
each data in the xml file under the target test type in test\resources, and then assert by the engine one by one
Environment configuration is the yaml file under test type under test\resources\yaml. The configuration file contains
dataSources，shardingRule，encryptRule and other info. for example:
dataSources:
db: !!com.zaxxer.hikari.HikariDataSource
driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:db;DB_CLOSE_DELAY=‑1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:

## sharding Rules
rules:
‑ !SHARDING
tables:
t_account:
actualDataNodes: db.t_account_${0..1}
tableStrategy:
standard:
shardingColumn: account_id
shardingAlgorithmName: account_table_inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

t_account_detail:
actualDataNodes: db.t_account_detail_${0..1}
tableStrategy:
standard:
shardingColumn: order_id
shardingAlgorithmName: account_detail_table_inline

bindingTables:
‑ t_account, t_account_detail
shardingAlgorithms:
account_table_inline:
type: INLINE
props:
algorithm‑expression: t_account_${account_id % 2}

account_detail_table_inline:
type: INLINE
props:
algorithm‑expression: t_account_detail_${account_id % 2}

keyGenerators:

383

https://github.com/junit-team/junit4/wiki/Parameterized-tests


Beijing SphereEx Technology Co., Ltd.

snowflake:
type: SNOWFLAKE

Assert data are in the xml under test type in test\resources. In the xml file, yaml‑rule means the environment configu‑
ration file path, input contains the target SQL and parameters, output contains the expected SQL and parameters. The
db‑type described the type for SQL parse, default is SQL92. For example:
<rewrite‑assertions yaml‑rule="yaml/sharding/sharding‑rule.yaml">
<!‑‑ to change SQL parse type, change db‑type ‑‑>
<rewrite‑assertion id="create_index_for_mysql" db‑type="MySQL">
<input sql="CREATE INDEX index_name ON t_account ('status')" />
<output sql="CREATE INDEX index_name ON t_account_0 ('status')" />
<output sql="CREATE INDEX index_name ON t_account_1 ('status')" />

</rewrite‑assertion>
</rewrite‑assertions>

After setting up the assert data and environment configuration, rewrite test engine will assert the corresponding SQL
without any Java codemodification.

384



Beijing SphereEx Technology Co., Ltd.

11
Reference

This chapter contains a section of technical implementation and test process with DBPlusEngine, which provide the
reference with users and developers.

11.1 Management

11.1.1 Data Structure in Registry Center

Under definednamespace, rules, props andmetadata nodes persist in YAML, andmodifying nodes candynamically re‑
fresh configurations. nodes node persist the runtime node of database access object, to distinguish different database
access instances.
namespace
├──rules # Global rule configuration
├──props # Properties configuration
├──metadata # Metadata configuration
├ ├──${schema_1} # Schema name 1
├ ├ ├──dataSources # Datasource configuration
├ ├ ├──rules # Rule configuration
├ ├ ├──tables # Table configuration
├ ├ ├ ├──t_1
├ ├ ├ ├──t_2
├ ├ ├──views # View configuration
├ ├ ├ ├──v_1
├ ├ ├ ├──v_2
├ ├──${schema_2} # Schema name 2
├ ├ ├──dataSources # Datasource configuration
├ ├ ├──rules # Rule configuration
├ ├ ├──tables # Table configuration
├──nodes
├ ├──compute_nodes
├ ├ ├──online
├ ├ ├ ├──proxy
├ ├ ├ ├ ├──${your_instance_ip_a}@${your_instance_port_x}
├ ├ ├ ├ ├──${your_instance_ip_b}@${your_instance_port_y}
├ ├ ├ ├ ├──....
├ ├ ├ ├──jdbc
├ ├ ├ ├ ├──${your_instance_ip_a}@${your_instance_pid_x}
├ ├ ├ ├ ├──${your_instance_ip_b}@${your_instance_pid_y}
├ ├ ├ ├ ├──....
├ ├ ├──attributies
├ ├ ├ ├──${your_instance_ip_a}@${your_instance_port_x}

385



Beijing SphereEx Technology Co., Ltd.

├ ├ ├ ├ ├──status
├ ├ ├ ├ ├──label
├ ├ ├ ├──${your_instance_ip_b}@${your_instance_pid_y}
├ ├ ├ ├ ├──status
├ ├ ├ ├──....
├ ├──storage_nodes
├ ├ ├──disable
├ ├ ├ ├──${schema_1.ds_0}
├ ├ ├ ├──${schema_1.ds_1}
├ ├ ├ ├──....
├ ├ ├──primary
├ ├ ├ ├──${schema_2.ds_0}
├ ├ ├ ├──${schema_2.ds_1}
├ ├ ├ ├──....

/rules

Global rule configuration, which can include transaction configuration, SQL parser configuration, etc.
‑ !TRANSACTION
defaultType: XA
providerType: Atomikos
‑ !SQL_PARSER
sqlCommentParseEnabled: true

/props

Properties configuration. Please refer to Configuration Manual for more details.
kernel‑executor‑size: 20
sql‑show: true

/metadata/${schemaName}/dataSources

A collection of multiple database connection pools, whose properties (e.g. DBCP, C3P0, Druid and HikariCP) are con‑
figured by users themselves.
ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool‑1
ds_1:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root

386



Beijing SphereEx Technology Co., Ltd.

idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_1?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool‑2

/metadata/${schemaName}/rules

Rule configurations, including sharding, read/write splitting, data encryption, shadow DB configurations.
‑ !SHARDING
xxx

‑ !READWRITE_SPLITTING
xxx

‑ !ENCRYPT
xxx

/metadata/${schemaName}/tables

Use separate node storage for each table, dynamic modification of metadata content is not supported currently.
name: t_order # Table name
columns: # Columns
id: # Column name
caseSensitive: false
dataType: 0
generated: false
name: id
primaryKey: trues
order_id:
caseSensitive: false
dataType: 0
generated: false
name: order_id
primaryKey: false

indexs: # Index
t_user_order_id_index: # Index name
name: t_user_order_id_index

/nodes/compute_nodes

It includes running instance information of database access object, with sub‑nodes as the identifiers of currently run‑
ning instance, which consist of IP and PORT.
Those identifiers are temporary nodes, which are registered when instances are online and cleared when instances
are offline. The registry centermonitors the change of those nodes to govern the database access of running instances
and other things.

387



Beijing SphereEx Technology Co., Ltd.

/nodes/storage_nodes

It is able to orchestrate replica database, delete or disable data dynamically.

11.2 Sharding

The major sharding processes of all the three DBPlusEngine products are identical. According to whether query opti‑
mization is performed, they can be divided into standard kernel process and federation executor engine process. The
standard kernel process consists of SQL Parse => SQL Route => SQL Rewrite => SQL Execute => Result Merge, which
is used to process SQL execution in standard sharding scenarios. The federation executor engine process consists of
SQL Parse => Logical PlanOptimize => Physical PlanOptimize => Plan Execute => Standard Kernel Process. The federa‑
tion executor engine perform logical plan optimization and physical plan optimization. In the optimization execution
phase, it relies on the standard kernel process to route, rewrite, execute, andmerge the optimized logical SQL.

Fig. 1: Sharding Architecture Diagram

388



Beijing SphereEx Technology Co., Ltd.

11.2.1 SQL Parsing

It is divided into lexical parsing and syntactic parsing. The lexical parser will split SQL into inseparable words, and
then the syntactic parser will analyze SQL and extract the parsing context, which can include tables, options, ordering
items, grouping items, aggregation functions, pagination information, query conditions and placeholders thatmay be
revised.

11.2.2 SQL Route

It is the sharding strategy that matches users’configurations according to the parsing context and the route path can
be generated. It supports sharding route and broadcast route currently.

11.2.3 SQL Rewrite

It rewrites SQL as statement that can be rightly executed in the real database, and can be divided into correctness
rewrite and optimization rewrite.

11.2.4 SQL Execution

Throughmulti‑thread executor, it executes asynchronously.

11.2.5 Result Merger

It mergesmultiple execution result sets to output through unified JDBC interface. Result merger includesmethods as
streammerger, memory merger and addition merger using decorator merger.

11.2.6 Query Optimization

Supported by federation executor engine(under development), optimization is performed on complex query such as
join query and subquery. It also supports distributed query across multiple database instances. It uses relational
algebra internally to optimize query plan, and then get query result through the best query plan.

11.2.7 Parse Engine

Compared to other programming languages, SQL is relatively simple, but it is still a complete set of programming
language, so there is no essential difference between parsing SQL grammar and parsing other languages (Java, C and
Go, etc.).

Abstract Syntax Tree

The parsing process can be divided into lexical parsing and syntactic parsing. Lexical parser is used to divide SQL into
indivisible atomic signs, i.e., Token. According to thedictionary providedbydifferent databasedialect, it is categorized
intokeyword, expression, literal valueandoperator. SQL is thenconverted intoabstract syntax treeby syntactic parser.
For example, the following SQL:
SELECT id, name FROM t_userWHERE status = 'ACTIVE' AND age > 18

389



Beijing SphereEx Technology Co., Ltd.

Its parsing AST (Abstract Syntax Tree) is this:

Fig. 2: SQL AST

To better understand, the Token of keywords in abstract syntax tree is shown in green; that of variables is shown in
red; what’s to be further divided is shown in grey.
At last, through traversing the abstract syntax tree, the context needed by sharding is extracted and the place thatmay
need to be rewritten is also marked out. Parsing context for the use of sharding includes select items, table informa‑
tion, sharding conditions, auto‑increment primary key information, Order By information, Group By information, and
pagination information (Limit, Rownum and Top). One‑time SQL parsing process is irreversible, each Token is parsed
according to the original order of SQL in a high performance. Considering similarities and differences between SQL
of all kinds of database dialect, SQL dialect dictionaries of different types of databases are provided in the parsing
module.

390



Beijing SphereEx Technology Co., Ltd.

SQL Parser

Features

■ Independent SQL parsing engine
■ The syntax rules can be easily expanded andmodified (using ANTLR)
■ Support multiple dialects

DB Status
MySQL supported
PostgreSQL supported
SQLServer supported
Oracle supported
SQL92 supported
openGauss supported

■ SQL format (developing)
■ SQL parameterize (developing)

API Usage

Maven config
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑sql‑parser‑engine</artifactId>
<version>${project.version}</version>

</dependency>
// According to the needs, introduce the parsing module of the specified dialect (take MySQL as an example), you can add all the
supported dialects, or just what you need
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere‑sql‑parser‑mysql</artifactId>
<version>${project.version}</version>

</dependency>

demo:
■ Get AST

/**
* databaseType type:String values: MySQL, Oracle, PostgreSQL, SQL92, SQLServer, openGauss
* sql type:String SQL to be parsed
* useCache type:boolean whether use cache
*@return parse context
*/
ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache)

■ GET SQLStatement
/**
* databaseType type:String values: MySQL, Oracle, PostgreSQL, SQL92, SQLServer, openGauss
* useCache type:boolean whether use cache
*@return SQLStatement
*/
ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "STATEMENT");
SQLStatement sqlStatement = sqlVisitorEngine.visit(parseContext);

391



Beijing SphereEx Technology Co., Ltd.

■ SQL Format
/**
* databaseType type:String values MySQL
* useCache type:boolean whether use cache
*@return String
*/
ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "FORMAT", new Properties());
String formatedSql = sqlVisitorEngine.visit(parseContext);

example：

11.2.8 Route Engine

It refers to the sharding strategy that matches databases and tables according to the parsing context and generates
route path. SQL with sharding keys can be divided into single‑sharding route (equal mark as the operator of sharding
key), multiple‑sharding route (IN as the operator of sharding key) and range sharding route (BETWEEN as the operator
of sharding key). SQL without sharding key adopts broadcast route.
Sharding strategies can usually be set in the database or by users. Strategies built in the database are relatively sim‑
ple and can generally be divided into last number modulo, hash, range, tag, time and so on. More flexible, sharding
strategies set by users can be customized according to their needs. Together with automatic datamigration, database
middle layer can automatically shard and balance the data without users paying attention to sharding strategies, and
thereby the distributed database can have the elastic scaling‑out ability.

Sharding Route

It is used in the situation to route according to the sharding key, and can be sub‑divided into 3 types, direct route,
standard route and Cartesian product route.

Direct Route

The conditions for direct route are relatively strict. It requires to shard through Hint (use HintAPI to appoint the route
to databases and tables directly). On the premise of having database sharding but not table sharding, SQL parsing
and the following result merging can be avoided. Therefore, with the highest compatibility, it can execute any SQL in
complex situations, including sub‑queries, self‑defined functions. Direct route can also be used in the situationwhere
sharding keys are not in SQL. For example, set sharding key as 3.
hintManager.setDatabaseShardingValue(3);

If the routing algorithm is value%2, when a logical database t_order corresponds to two physical databasest_order_0
and t_order_1, the SQL will be executed on t_order_1 after routing. The following is a sample code using the API.
String sql = "SELECT * FROM t_order";
try (

HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {
while (rs.next()) {
//...

}
}

}

392



Beijing SphereEx Technology Co., Ltd.

Standard Route

Standard route is DB Plus Engine’s most recommended sharding method. Its application range is the SQL that does
not include joint query or only includes joint query betweenbinding tables. When the sharding operator is equalmark,
the route result will fall into a single database (table); when sharding operators are BETWEEN or IN, the route result
will not necessarily fall into the only database (table). So one logic SQL can finally be split into multiple real SQL to
execute. For example, if sharding is according to the odd number or even number of order_id, a single table query SQL
is as the following:
SELECT * FROM t_orderWHERE order_id IN (1, 2);

The route result will be:
SELECT * FROM t_order_0WHERE order_id IN (1, 2);
SELECT * FROM t_order_1WHERE order_id IN (1, 2);

The complexity and performance of the joint query are comparable with those of single‑table query. For instance, if a
joint query SQL that contains binding tables is as this:
SELECT * FROM t_order o JOIN t_order_item iON o.order_id=i.order_id WHERE order_id IN (1, 2);

Then, the route result will be:
SELECT * FROM t_order_0 o JOIN t_order_item_0 iON o.order_id=i.order_id WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 iON o.order_id=i.order_id WHERE order_id IN (1, 2);

It can be seen that, the number of divided SQL is the same as the number of single tables.

Cartesian Route

Cartesian route has themost complex situation, it cannot locate sharding rules according to the binding table relation‑
ship, so the joint query between non‑binding tables needs to be split into Cartesian product combination to execute.
If SQL in the last case is not configured with binding table relationship, the route result will be:
SELECT * FROM t_order_0 o JOIN t_order_item_0 iON o.order_id=i.order_id WHERE order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 iON o.order_id=i.order_id WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0 iON o.order_id=i.order_id WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 iON o.order_id=i.order_id WHERE order_id IN (1, 2);

Cartesian product route has a relatively low performance, so it should be careful to use.

Broadcast Route

ForSQLwithout shardingkey, broadcast route is used. According toSQL types, it canbedivided intofive types, schema
& table route, database schema route, database instance route, unicast route and ignore route.

Schema & Table Route

Schema & table route is used to deal with all the operations of physical tables related to its logic table, including DQL
and DML without sharding key and DDL, etc. For example.
SELECT * FROM t_orderWHERE good_prority IN (1, 10);

It will traverse all the tables in all the databases, match the logical table and the physical table name one by one and
execute them if succeeded. After routing, they are:

393



Beijing SphereEx Technology Co., Ltd.

SELECT * FROM t_order_0WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3WHERE good_prority IN (1, 10);

Database Schema Route

Database schema route is used to deal with database operations, including the SET databasemanagement order used
to set the database and transaction control statement as TCL. In this case, all physical databases matched with the
name are traversed according to logical database name, and the command is executed in the physical database. For
example:
SET autocommit=0;

If this command is executed in t_order, t_order will have 2 physical databases. And it will actually be executed in both
t_order_0 and t_order_1.

Database Instance Route

Database instance route is used in DCL operation, whose authorization statement aims at database instances. No
matter howmany schemas are included in one instance, each one of them can only be executed once. For example:
CREATE USER customer@127.0.0.1 identified BY '123';

This command will be executed in all the physical database instances to ensure customer users have access to each
instance.

Unicast Route

Unicast route is used in the scenario of acquiring the information from some certain physical table. It only requires to
acquire data from any physical table in any database. For example:
DESCRIBE t_order;

The descriptions of the two physical tables, t_order_0 and t_order_1 of t_order have the same structure, so this com‑
mand is executed once on any physical table.

Ignore Route

Ignore route is used to block the operation of SQL to the database. For example:
USE order_db;

This commandwill not be executed in physical database. Because DB Plus Engine uses logic Schema, there is no need
to send the Schema shift order to the database.
The overall structure of route engine is as the following:

394



Beijing SphereEx Technology Co., Ltd.

Fig. 3: Route Engine

11.2.9 Rewrite Engine

The SQL written by engineers facing logic databases and tables cannot be executed directly in actual databases. SQL
rewrite is used to rewrite logic SQL into rightly executable ones in actual databases, including two parts, correctness
rewrite and optimization rewrite.

395



Beijing SphereEx Technology Co., Ltd.

Correctness Rewrite

In situations with sharding tables, it requires to rewrite logic table names in sharding settings into actual table names
acquired after routing. Database sharding does not require to rewrite table names. In addition to that, there are also
column derivation, pagination information revision and other content.

Identifier Rewrite

Identifiers that need to be rewritten include table name, index name and schema name. Table name rewrite refers to
the process to locate the position of logic tables in the original SQL and rewrite it as the physical table. Table name
rewrite is one typical situation that requires to parse SQL. From amost plain case, if the logic SQL is as follow:
SELECT order_id FROM t_orderWHERE order_id=1;

If the SQL is configuredwith sharding key order_id=1, it will be routed to Sharding Table 1. Then, the SQL after rewrite
should be:
SELECT order_id FROM t_order_1WHERE order_id=1;

In thismost simple kind of SQL, whether parsing SQL to abstract syntax tree seems unimportant, SQL can be rewritten
only by searching for and substituting characters. But in the following situation, it is unable to rewrite SQL rightly
merely by searching for and substituting characters:
SELECT order_id FROM t_orderWHERE order_id=1 AND remarks=' t_order xxx';

The SQL rightly rewritten is supposed to be:
SELECT order_id FROM t_order_1WHERE order_id=1 AND remarks=' t_order xxx';

Rather than:
SELECT order_id FROM t_order_1WHERE order_id=1 AND remarks=' t_order_1 xxx';

Because there may be similar characters besides the table name, the simple character substitute method cannot be
used to rewrite SQL. Here is another more complex SQL rewrite situation:
SELECT t_order.order_id FROM t_orderWHERE t_order.order_id=1 AND remarks=' t_order xxx';

The SQL above takes table name as the identifier of the field, so it should also be revised when SQL is rewritten:
SELECT t_order_1.order_id FROM t_order_1WHERE t_order_1.order_id=1 AND remarks=' t_order xxx';

But if there is another table name defined in SQL, it is not necessary to revise that, even though that name is the same
as the table name. For example:
SELECT t_order.order_id FROM t_order AS t_orderWHERE t_order.order_id=1 AND remarks=' t_order xxx';

SQL rewrite only requires to revise its table name:
SELECT t_order.order_id FROM t_order_1 AS t_orderWHERE t_order.order_id=1 AND remarks=' t_order xxx';

Index name is another identifier that can be rewritten. In some databases (such as MySQL/SQLServer), the index is
created according to the table dimension, and its names in different tables can repeat. In some other databases (such
as PostgreSQL/Oracle), however, the index is created according to the database dimension, index names in different
tables are required to be one and the only.
In DB Plus Engine, schemamanagementmethod is similar to that of the table. It uses logic schema tomanage a set of
data sources, so it requires to replace the logic schema written by users in SQL with physical database schema.
DBPlus Engine only supports to use schema in databasemanagement statements but not in DQL andDML statements,
for example:

396



Beijing SphereEx Technology Co., Ltd.

SHOW COLUMNS FROM t_order FROM order_ds;

Schema rewrite refers to rewriting logic schema as a right and real schema found arbitrarily with unicast route.

Column Derivation

Column derivation in query statements usually results from two situations. First, DB Plus Engine needs to acquire the
corresponding data when merging results, but it is not returned through the query SQL. This kind of situation aims
mainly at GROUP BY and ORDER BY. Result merger requires sorting and ranking according to items of GROUP BY and
ORDER BY field. But if sorting and ranking items are not included in the original SQL, it should be rewritten. Look at
the situation where the original SQL has the information required by result merger:
SELECT order_id, user_id FROM t_orderORDER BY user_id;

Since user_id is used in ranking, the result merger needs the data able to acquire user_id. The SQL above is able to
acquire user_id data, so there is no need to add columns.
If the selected itemdoes not contain the column required by resultmerger, it will need to add column, as the following
SQL:
SELECT order_id FROM t_orderORDER BY user_id;

Since the original SQL does not contain user_id needed by result merger, the SQL needs to be rewritten by adding
columns, and after that, it will be:
SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_orderORDER BY user_id;

What’s to be mentioned, column derivation will only add the missing column rather than all of them; the SQL that
includes * in SELECT will also selectively add columns according to the meta‑data information of tables. Here is a
relatively complex SQL column derivation case:
SELECT o.* FROM t_order o, t_order_item iWHERE o.order_id=i.order_idORDER BY user_id, order_item_id;

Suppose only t_order_item table contains order_item_id column, according to the meta‑data information of tables,
the user_id in sorting item exists in table t_order as merging result, but order_item_id does not exist in t_order, so it
needs to add columns. The SQL after that will be:
SELECT o.*, order_item_id AS ORDER_BY_DERIVED_0 FROM t_order o, t_order_item iWHERE o.order_id=i.order_idORDER BY
user_id, order_item_id;

Another situation of column derivation is using AVG aggregation function. In distributed situations, it is not right to
calculate the average value with avg1 + avg2 + avg3 / 3, and it should be rewritten as (sum1 + sum2 + sum3) / (count1
+ count2 + count3). This requires to rewrite the SQL that contains AVG as SUM and COUNT and recalculate the average
value in result merger. Such as the following SQL:
SELECT AVG(price) FROM t_orderWHERE user_id=1;

Should be rewritten as:
SELECT COUNT(price) AS AVG_DERIVED_COUNT_0, SUM(price) AS AVG_DERIVED_SUM_0 FROM t_orderWHERE user_id=1;

Then it can calculate the right average value through result merger.
The last kind of column derivation is in SQL with INSERT. With database auto‑increment key, there is no need to fill in
primarykeyfield. Butdatabaseauto‑incrementkeycannot satisfy the requirementofonlyoneprimarykeybeing in the
distributed situation. SoDBPlus Engineprovides adistributed auto‑increment key generation strategy, enabling users
to replace the current auto‑increment key invisibly with a distributed one without changing existing codes through
column derivation. Distributed auto‑increment key generation strategy will be expounded in the following part, here
we only explain the content related to SQL rewrite. For example, if the primary key of t_order is order_id, and the
original SQL is:

397



Beijing SphereEx Technology Co., Ltd.

INSERT INTO t_order (`field1`, `field2`) VALUES (10, 1);

It can be seen that the SQL above does not include an auto‑increment key, which will be filled by the database itself.
After DB Plus Engine set an auto‑increment key, the SQL will be rewritten as:
INSERT INTO t_order (`field1`, `field2`, order_id) VALUES (10, 1, xxxxx);

RewrittenSQLwill addauto‑increment keynameand its value generated automatically in the last part of INSERTFIELD
and INSERT VALUE. xxxxx in the SQL above stands for the latter one.
If INSERT SQL does not contain the column name of the table, DB Plus Engine can also automatically generate auto‑
increment key by comparing the number of parameter and column in the table meta‑information. For example, the
original SQL is:
INSERT INTO t_order VALUES (10, 1);

The rewritten SQL only needs to add an auto‑increment key in the column where the primary key is:
INSERT INTO t_order VALUES (xxxxx, 10, 1);

When auto‑increment key derives column, if the user writes SQLwith placeholder, he only needs to rewrite parameter
list but not SQL itself.

Pagination Revision

The scenarios of acquiring pagination data from multiple databases is different from that of one single database. If
every 10 pieces of data are taken as one page, the user wants to take the second page of data. It is not right to take,
acquire LIMIT 10, 10 under sharding situations, and take out the first 10 pieces of data according to sorting conditions
after merging. For example, if the SQL is:
SELECT score FROM t_scoreORDER BY score DESC LIMIT 1, 2;

The following picture shows the pagination execution results without SQL rewrite.

398



Beijing SphereEx Technology Co., Ltd.

Fig. 4: Pagination without rewrite

As shown in the picture, if you want to acquire the second and the third piece of data ordered by score common in
both tables, and they are supposed to be 95 and 90. Since the executed SQL can only acquire the second and the third
piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can
only merge from 90, 80, 85 and 75 already acquired, so the right result cannot be acquired anyway.
The rightway is to rewritepagination conditionsas LIMIT0, 3, takeout all thedata fromthefirst twopagesandcombine
sorting conditions to calculate the right data. The followingpicture shows theexecutionof pagination results after SQL
rewrite.

399



Beijing SphereEx Technology Co., Ltd.

Fig. 5: Pagination with rewrite

The latter the offset position is, the lower the efficiency of using LIMIT paginationwill be. There aremanyways to avoid
using LIMIT as paginationmethod, such as constructing a secondary index to record line record number and line offset
amount, or using the tail ID of last pagination data as the pagination method of conditions of the next query.
When revising pagination information, if the user uses placeholder method to write SQL, he only needs to rewrite
parameter list rather than SQL itself.

Batch Split

When using batch inserted SQL, if the inserted data crosses sharding, the user needs to rewrite SQL to avoid writing
excessive data into the database. The differences between insert operation andquery operation are: though the query
sentence has used sharding keys that do not exist in current sharding, they will not have any influence on data, but
insert operation has to delete extra sharding keys. Take the following SQL for example:
INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, 'xxx');

If the database is still divided into two parts according to odd and even number of order_id, this SQL will be executed
after its table name is revised. Then, both shardswill bewrittenwith the same record. Though only the data that satis‑
fies sharding conditions can be taken out from query statement, it is not reasonable for the schema to have excessive
data. So the SQL should be rewritten as:
INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

400



Beijing SphereEx Technology Co., Ltd.

IN query is similar to batch insertion, but IN operation will not lead to wrong data query result. Through rewriting IN
query, the query performance can be further improved. Like the following SQL:
SELECT * FROM t_orderWHERE order_id IN (1, 2, 3);

Is rewritten as:
SELECT * FROM t_order_0WHERE order_id IN (2);
SELECT * FROM t_order_1WHERE order_id IN (1, 3);

The query performancewill be further improved. For now, DB Plus Engine has not realized this rewrite strategy, so the
current rewrite result is:
SELECT * FROM t_order_0WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1WHERE order_id IN (1, 2, 3);

Though the execution result of SQL is right, but it has not achieved the most optimized query efficiency.

Optimization Rewrite

Its purpose is toeffectively improve theperformancewithout influencing thecorrectnessof thequery. It canbedivided
into single node optimization and streammerger optimization.

Single Node Optimization

It refers to the optimization that stops the SQL rewrite from the route to the single node. After acquiring one route
result, if it is routed to a single data node, resultmerging is unnecessary to be involved, so there is no need for rewrites
as derived column, pagination information and others. In particular, there is no need to read from the first piece of
information, which reduces the pressure for the database to a large extent and savesmeaningless consumption of the
network bandwidth.

StreamMerger Optimization

It only adds sorting items and sorting orders identical with grouping items and ORDER BY to GROUP BY SQL, and they
are used to transfer memory merger to streammerger. In the result merger part, streammerger and memory merger
will be explained in detail.
The overall structure of rewrite engine is shown in the following picture.

401



Beijing SphereEx Technology Co., Ltd.

Fig. 6: Rewrite Engine

11.2.10 Execute Engine

DB Plus Engine adopts a set of automatic execution engine, responsible for sending the true SQL, which has been
routed and rewritten, to execute in the underlying data source safely and effectively. It does not simply send the SQL
through JDBC to directly execute in the underlying data source, or put execution requests directly to the thread pool
to concurrently execute, but focuses more on the creation of a balanced data source connection, the consumption
generated by the memory usage, the maximum utilization of the concurrency and other problems. The objective of
the execution engine is to automatically balance between the resource control and the execution efficiency.

Connection Mode

From the perspective of resource control, the connection number of the business side’s visit of the database should
be limited. It can effectively prevent some certain business from occupying excessive resource, exhausting database
connection resources and influencing the normal use of other businesses. Especially when one database contains
many tables, a logic SQL that does not contain any sharding key will produce a large amount of physical SQLs that fall
into different tables in one database. If each physical SQL takes an independent connection, a query will undoubtedly
take up excessive resources.
From the perspective of execution efficiency, holding an independent database connection for each sharding query
can make effective use of multi‑thread to improve execution efficiency. Opening an independent thread for each
database connection canparallelize IOproducedconsumption. Holdingan independentdatabase connection for each
sharding query can also avoid loading the query result to thememory too early. It is enough for independent database

402



Beijing SphereEx Technology Co., Ltd.

connections tomaintain result set quotation and cursor position, andmove the cursor when acquiring corresponding
data.
Merging result set bymoving down its cursor is called streammerger. It does not require to load all the query results to
thememory. Thus, it is able to savememory resourceeffectivelyand reduce trash recycle frequency. When it isnotable
tomake sure each sharding query holds an independent database connection, it requires to load all the current query
results to the memory before reusing that database connection to acquire the query result from the next sharding
table. Therefore, though the stream merger can be used, under this kind of circumstances, it will also degenerate to
the memory merger.
The control and protection of database connection resources is one thing, adopting better mergingmodel to save the
memory resources of middleware is another thing. How to deal with the relationship between them is a problem that
DB Plus Engine execution engine should solve. To be accurate, if a sharding SQL needs to operate 200 tables under
some database case, should we choose to create 200 parallel connection executions or a serial connection execution?
Or to say, how to choose between efficiency and resource control?
Aiming at the above situation, DB Plus Engine has provided a solution. It has put forward a Connection Mode concept
divided into two types, MEMORY_STRICTLY mode and CONNECTION_STRICTLY mode.

MEMORY_STRICTLY Mode

The prerequisite to use this mode is that DB Plus Engine does not restrict the connection number of one operation. If
the actual executed SQL needs to operate 200 tables in some database instance, it will create a new database connec‑
tion for each table and deal with them concurrently throughmulti‑thread tomaximize the execution efficiency. When
the SQL is up to standard, it will choose stream merger in priority to avoid memory overflow or frequent garbage re‑
cycle.

CONNECTION_STRICTLY Mode

The prerequisite to use this mode is that DB Plus Engine strictly restricts the connection consumption number of one
operation. If the SQL to be executed needs to operate 200 tables in database instance, it will create one database
connection and operate them serially. If shards exist in different databases, it will still be multi‑thread operations for
different databases, but with only one database connection being created for each operation in each database. It can
prevent the problem brought by excessive occupation of database connection from one request. The mode chooses
memory merger all the time.
The MEMORY_STRICTLY mode is applicable to OLAP operation and can increase the system capacity by removing
database connection restrictions. It is also applicable to OLTP operation, which usually has sharding keys and can
be routed to a single shard. So it is a wise choice to control database connection strictly to make sure resources of
online system databases can be used by more applications.

Automatic Execution Engine

DB Plus Engine uses which mode at first is up to users’setting and they can choose to use MEMORY_STRICTLY mode
or CONNECTION_STRICTLY mode according to their actual business scenarios.
The solution gives users the right to choose, requiring them to know the advantages and disadvantages of bothmodes
and make decision according to the actual business situations. No doubt, it is not the best solution due to increasing
users’study cost and use cost.
This kind of dichotomy solution lacks flexible coping ability to switch between twomodes with static initialization. In
practical situations, route results of each time may differ with different SQL and placeholder indexes. It means some
operationsmay need to usememorymerger, while others are better to use streammerger. Connectionmodes should
not be set by users before initializing DB Plus Engine, but should be decided dynamically by the situation of SQL and
placeholder indexes.
To reduce users’use cost and solve the dynamic connectionmode problem, DBPlus Engine has extracted the thought
of automatic execution engine in order to eliminate the connection mode concept inside. Users do not need to know

403



Beijing SphereEx Technology Co., Ltd.

whatare socalledMEMORY_STRICTLYmodeandCONNECTION_STRICTLYmode, but let theexecutionengine tochoose
the best solution according to current situations.
Automatic execution engine has narrowed the selection scale of connection mode to each SQL operation. Aiming at
each SQL request, automatic execution engine will do real‑time calculations and evaluations according to its route
result and execute the appropriate connection mode automatically to strike the most optimized balance between re‑
source control and efficiency. For automatic execution engine, users only need to configure maxConnectionSizePer‑
Query, which represents the maximum connection number allowed by each database for one query.
The execution engine can be divided into two phases: preparation and execution.

Preparation Phrase

As indicated by its name, this phrase is used to prepare the data to be executed. It can be divided into two steps: result
set grouping and unit creation.
Result setgrouping is thekey to realize the internal connectionmodel concept. According to theconfigurationoptionof
maxConnectionSizePerQuery, execution engine will choose an appropriate connection mode combined with current
route result.
Detailed steps are as follow:

1. Group SQL route results according to data source names.
2. Through the equation in the following picture, users can acquire the SQL route result group to be executed by

each database case within themaxConnectionSizePerQuery permission range and calculate themost optimized
connection mode of this request.

404



Beijing SphereEx Technology Co., Ltd.

Fig. 7: Connection mode calculate formula

Within the range that maxConnectionSizePerQuery permits, when the request number that one connection needs
to execute is more than 1, meaning current database connection cannot hold the corresponding data result set, it
must uses memory merger. On the contrary, when it equals to 1, meaning current database connection can hold the
according data result set, it can use streammerger.
Each choice of connection mode aims at each physical database; that is to say, if it is routed to more than one
databases, the connection mode of each database maymix with each other and not be the same in one query.
Users canuse the route group result acquired fromthe last step to create the executionunit. When thedata sourceuses
technologies, such as database connection pool, to control database connection number, there is some chance for
deadlock, if it has not dealt with concurrency properly. Asmultiple requestswaiting for each other to release database
connection resources, it will generate hunger wait and cause the crossing deadlock problem.
For example, suppose onequery needs to acquire twodatabase connections fromadata source andapply them in two
table sharding queries routed to one database. It is possible that Query A has already acquired a database connection
from that data source and waits to acquire another connection; but in the same time, Query B has also finished it and
waits. If the maximum connection number that the connection pool permits is 2, those two query requests will wait
forever. The following picture has illustrated the deadlock situation:

405



Beijing SphereEx Technology Co., Ltd.

Fig. 8: Dead lock

To avoid the deadlock, DB Plus Engine will go through synchronous processing when acquiring database connection.
When creating execution units, it acquires all the database connections that this SQL requires for once with atomic
method and reduces the possibility of acquiring only part of the resources. Due to the high operation frequency, lock‑
ing the connectioneach timewhenacquiring it candecreaseDBPlusEngine’s concurrency. Therefore, it has improved
two aspects here:

1. Avoid the setting that locking only takes one database connection each time. Because under this kind of circum‑
stance, two requestswaiting for eachotherwill not happen, so there is noneed for locking. MostOLTPoperations
use sharding keys to route to the only data node, which will make the system in a totally unlocked state, thereby
improve the concurrency efficiency further. In addition to routing to a single shard, readwrite‑splitting also be‑
longs to this category.

2. Only aimatMEMORY_STRICTLYmode to lock resources. WhenusingCONNECTION_STRICTLYmode, all the query
result sets will release database connection resources after loading them to the memory, so deadlock wait will
not appear.

406



Beijing SphereEx Technology Co., Ltd.

Execution Phrase

Applied in actually SQL execution, this phrase can be divided into two steps: group execution and merger result gen‑
eration.
Group execution can distribute execution unit groups generated in preparation phrase to the underlying concurrency
engine and send events according to each key steps during the execution process, such as starting, successful and
failed executionevents. Executionengineonly focusesonmessage sending rather than subscribers of the event. Other
DB Plus Engine modules, such as distributed transactions, invoked chain tracing and so on, will subscribe focusing
events and do corresponding operations. Through the connection mode acquired in preparation phrase, DB Plus En‑
ginewill generatememorymerger result set or streammerger result set, and transfer it to the resultmerger engine for
the next step.
The overall structure of execution engine is shown as the following picture:

Fig. 9: Execute engine architecture

407



Beijing SphereEx Technology Co., Ltd.

11.2.11 Merger Engine

Result merger refers to merging multi‑data result set acquired from all the data nodes as one result set and returning
it to the request end rightly.
In function, the resultmerger supported byDBPlus Engine canbedivided into five kinds, iteration, order‑by, group‑by,
pagination andaggregation,which are in composition relation rather than clash relation. In structure, it canbedivided
into stream merger, memory merger and decorator merger, among which, stream merger and memory merger clash
with each other; decorator merger can be further processed based on streammerger andmemory merger.
Since the result set is returned from database line by line instead of being loaded to the memory all at once, the most
prior choice of merger method is to follow the database returned result set, for it is able to reduce the memory con‑
sumption to a large extend.
Stream merger means, each time, the data acquired from the result set is able to return the single piece of right data
line by line.
It is the most suitable one for themethod that the database returns original result set. Iteration, order‑by, and stream
group‑by belong to streammerger.
Memory merger needs to iterate all the data in the result set and store it in the memory first. after unified grouping,
ordering, aggregation andother computations, it will pack it into data result set, which is visited line by line, and return
that result set.
Decorator merger merges and reinforces all the result sets function uniformly. Currently, decorator merger has pagi‑
nation merger and aggregation merger these two kinds.

Iteration Merger

As the simplest merger method, iteration merger only requires the combination of multiple data result sets into a
single‑direction chain table. After iterating current data result sets in the chain table, it only needs tomove the element
of chain table to the next position and iterate the next data result set.

Order‑by Merger

Because there is ORDER BY statement in SQL, each data result has its own order. So it is enough only to order data
value that the result set cursor currently points to, which is equal to sequencing multiple already ordered arrays, and
therefore, order‑by merger is the most suitable ordering algorithm in this situation.
Whenmerging order inquiries, DB Plus Engine will compare current data values in each result set (which is realized by
Java Comparable interface) and put them into the priority queue. Each time when acquiring the next piece of data, it
only needs tomove down the result set in the top end of the line, renter the priority order according to the new cursor
and relocate its own position.
Here is an instance to explain DB Plus Engine’s order‑by merger. The following picture is an illustration of ordering
by the score. Data result sets returned by 3 tables are shown in the example and each one of them has already been
ordered according to the score, but there is no order between 3 data result sets. Order the data value that the result
set cursor currently points to in these 3 result sets. Then put them into the priority queue. the data value of t_score_0
is the biggest, followed by that of t_score_2 and t_score_1 in sequence. Thus, the priority queue is ordered by the
sequence of t_score_0, t_score_2 and t_score_1.

408



Beijing SphereEx Technology Co., Ltd.

Fig. 10: Order by merger example 1

This diagram illustrates how the order‑by merger works when using next invocation. We can see from the diagram
that when using next invocation, t_score_0 at the first of the queue will be popped out. After returning the data value
currently pointed by the cursor (i.e., 100) to the client end, the cursor will be moved down and t_score_0 will be put
back to the queue.
While the priority queue will also be ordered according to the t_score_0 data value (90 here) pointed by the cursor of
current data result set. According to the current value, t_score_0 is at the last of the queue, and in the second place of
the queue formerly, the data result set of t_score_2, automatically moves to the first place of the queue.
In the second next operation, t_score_2 in the first position is popped out of the queue. Its value pointed by the cursor
of the data result set is returned to the client end, with its cursor moved down to rejoin the queue, and the following
will be in the same way. If there is no data in the result set, it will not rejoin the queue.

409



Beijing SphereEx Technology Co., Ltd.

Fig. 11: Order by merger example 2

It can be seen that, under the circumstance that data in each result set is ordered while result sets are disordered, DB
Plus Engine does not need to upload all the data to the memory to order. In the order‑by merger method, each next
operation only acquires the right piece of data each time, which saves the memory consumption to a large extent.
On the other hand, the order‑bymerger hasmaintained the orderliness on horizontal axis and vertical axis of the data
result set. Naturally ordered, vertical axis refers to each data result set itself, which is acquired by SQLwith ORDER BY.
Horizontal axis refers to the current value pointed by each data result set, and its order needs to bemaintained by the
priority queue.Each time when the current cursor moves down, it requires to put the result set in the priority order
again, which means only the cursor of the first data result set can bemoved down.

Group‑by Merger

With the most complicated situation, group‑by merger can be divided into stream group‑by merger and memory
group‑by merger. Stream group‑by merger requires SQL field and order item type (ASC or DESC) to be the same with
group‑by item. Otherwise, its data accuracy can only be maintained by memory merger.
For instance, if it is sharded by subject, table structure contains examinees’name (to simplify, name repetition is not
taken into consideration) and score. The SQL used to acquire each examinee’s total score is as follow:
SELECT name, SUM(score) FROM t_score GROUP BY nameORDER BY name;

When order‑by item and group‑by item are totally consistent, the data obtained is continuous. The data to group are
all stored in the data value that data result set cursor currently points to, stream group‑by merger can be used, as
illustrated by the diagram:

410



Beijing SphereEx Technology Co., Ltd.

Fig. 12: Group bymerger example 1

The merging logic is similar to that of order‑by merger. The following picture shows how stream group‑by merger
works in next invocation.

411



Beijing SphereEx Technology Co., Ltd.

Fig. 13: Group bymerger example 2

We can see from the picture, in the first next invocation, t_score_java in the first position, along with other result set
data also having the grouping value of“Jerry”, will be popped out of the queue. After acquiring all the students’
scoreswith the name of“Jerry”, the accumulation operationwill be proceeded. Hence, after the first next invocation
is finished, the result set acquired is the sum of Jerry’s scores. In the same time, all the cursors in data result sets will
be moved down to a different data value next to“Jerry”and rearranged according to current result set value. Thus,
the data that contains the second name“John”will be put at the beginning of the queue.
Stream group‑by merger is different from order‑by merger only in two points:

1. It will take out all the data with the same group item frommultiple data result sets for once.
2. It does the aggregation calculation according to aggregation function type.

For the inconsistency between the group item and the order item, it requires to upload all the data to the memory to
group and aggregate, since the relevant data value needed to acquire group information is not continuous, and stream
merger is not able to use. For example, acquire each examinee’s total score through the following SQLandorder them
from the highest to the lowest:
SELECT name, SUM(score) FROM t_score GROUP BY nameORDER BY score DESC;

Then, stream merger is not able to use, for the data taken out from each result set is the same as the original data of
the diagram ordered by score in the upper half part structure.
When SQL only contains group‑by statement, according to different database implementation, its sequencing order
may not be the same as the group order. The lack of ordering statement indicates the order is not important in this
SQL. Therefore, through SQL optimization re‑write, DB Plus Engine can automatically add the ordering item same as
grouping item, converting it from the memory merger that consumes memory to streammerger.

412



Beijing SphereEx Technology Co., Ltd.

Aggregation Merger

Whether stream group‑by merger or memory group‑by merger processes the aggregation function in the same way.
Therefore, aggregation merger is an additional merging ability based on what have been introduced above, i.e., the
decorator mode. The aggregation function can be categorized into three types, comparison, sum and average.
Comparison aggregation function refers to MAX and MIN. They need to compare all the result set data and return its
maximum or minimum value directly.
Sum aggregation function refers to SUM and COUNT. They need to sum up all the result set data.
Average aggregation function refers only to AVG. Itmust be calculated through SUMand COUNT of SQL re‑write, which
has beenmentioned in SQL re‑write, so we will state nomore here.

Pagination Merger

All themerger types above can be paginated. Pagination is the decorator added onother kinds ofmergers. DBPlus En‑
gine augments its ability to paginate the data result set through the decoratormode. Paginationmerger is responsible
for filtering the data unnecessary to acquire.
DB Plus Engine’s pagination function can bemisleading to users in that they may think it will take a large amount of
memory. In distributed scenarios, it can only guarantee the data accuracy by rewriting LIMIT 10000000, 10 to LIMIT 0,
10000010. Users can easily have the misconception that DB Plus Engine uploads a large amount of meaningless data
to the memory and has the risk of memory overflow. Actually, it can be known from the principle of stream merger,
only memory group‑by merger will upload all the data to the memory. Generally speaking, however, SQL used for
OLAP grouping, is applied more frequently to massive calculation or small result generation rather than vast result
data generation. Except formemory group‑bymerger, other cases use streammerger to acquire data result set. So DB
Plus Engine would skip unnecessary data through next method in result set, rather than storing them in the memory.
What’s to be noticed, pagination with LIMIT is not the best practice actually, because a large amount of data still
needs to be transmitted to DB Plus Engine’s memory space for ordering. LIMIT cannot search for data by index, so
paginating with ID is a better solution on the premise that the ID continuity can be guaranteed. For example:
SELECT * FROM t_orderWHERE id > 100000 AND id <= 100010ORDER BY id;

Or search the next page through the ID of the last query result, for example:
SELECT * FROM t_orderWHERE id > 10000000 LIMIT 10;

The overall structure of merger engine is shown in the following diagram:

413



Beijing SphereEx Technology Co., Ltd.

Fig. 14: Merge Architecture

11.3 Transaction

11.3.1 Navigation

This chapter introduces the principles of the distributed transactions:
■ 2PC transaction with XA
■ BASE transaction with Seata

11.3.2 XA Transaction

XAShardingSphereTransactionManager is XA transaction manager of DBPlusEngine. Its main responsibility is to man‑
age and adapt multiple data sources, and send the corresponding transactions to concrete XA transaction manager.

414



Beijing SphereEx Technology Co., Ltd.

Fig. 15: Principle of ShardingSphere transaction XA

Transaction Begin

When receiving set autoCommit=0 from client, XAShardingSphereTransactionManager will use XA transaction man‑
agers to start overall XA transactions, which is marked by XID.

Execute actual sharding SQL

After XAShardingSphereTransactionManager register the corresponding XAResource to the current XA transaction,
transaction manager will send XAResource.start command to databases. After databases received XAResource.end
command, all SQL operator will mark as XA transaction.
For example:
XAResource1.start ## execute in the enlist phase
statement.execute("sql1");
statement.execute("sql2");
XAResource1.end ## execute in the commit phase

sql1 and sql2 in example will be marked as XA transaction.

415



Beijing SphereEx Technology Co., Ltd.

Commit or Rollback

After XAShardingSphereTransactionManager receives the commit command in the access, it will delegate it to the ac‑
tual XA manager. It will collect all the registered XAResource in the thread, before sending XAResource.end to mark
the boundary for the XA transaction. Then it will send prepare command one by one to collect votes from XAResource.
If all the XAResource feedback is OK, it will send commit command to finally finish it; If there is any No XAResource
feedback, it will send rollback command to roll back. After sending the commit command, all XAResource exceptions
will be submitted again according to the recovery log to ensure the atomicity and high consistency.
For example:
XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResource1.commit
XAResource2.commit

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResource1.rollback
XAResource2.rollback

11.3.3 Seata BASE transaction

When integrating Seata AT transaction, we need to integrate TM, RM and TC components into DBPlusEngine trans‑
action manager. Seata have proxied DataSource interface in order to RPC with TC. Similarly, DBPlusEngine faced to
DataSource interface to aggregate data sources too. After Seata DataSource encapsulation, it is easy to put Seata AT
transaction into DBPlusEngine sharding ecosystem.

416



Beijing SphereEx Technology Co., Ltd.

Fig. 16: Seata BASE transaction

Init Seata Engine

Whenanapplication containingShardingSphereTransactionBaseSeataAT startup, theuser‑configuredDataSourcewill
be wrapped into Seata DataSourceProxy through seata.conf, then registered into RM.

Transaction Begin

TM controls the boundaries of global transactions. TM obtains the global transaction ID by sending Begin instructions
to TC. All branch transactions participate in the global transaction through this global transaction ID. The context of
the global transaction ID will be stored in the thread local variable.

417



Beijing SphereEx Technology Co., Ltd.

Execute actual sharding SQL

Actual SQL in Seata global transaction will be intercepted to generate undo snapshots by RM and sends participate
instructions to TC to join global transaction. Since actual sharding SQLs executed in multi‑threads, global transac‑
tion context should transfer from main thread to child thread, which is exactly the same as context transfer between
services.

Commit or Rollback

When submitting a Seata transaction, TM sends TC the commit and rollback instructions of the global transaction. TC
coordinates all branch transactions for commit and rollback according to the global transaction ID.

11.4 Scaling

11.4.1 Principle Description

Consider about these challenges of DBPlusEngine‑Scaling, the solution is: Use two database clusters temporarily, and
switch after the scaling is completed.

Fig. 17: Scaling Principle Overview

418



Beijing SphereEx Technology Co., Ltd.

Advantages:
1. No effect for origin data during scaling.
2. No risk for scaling failure.
3. No limited by sharding strategies.

Disadvantages：
1. Redundant servers during scaling.
2. All data needs to be moved.

DBPlusEngine‑Scalingwill analyze the sharding rules and extract information like datasource and data nodes. Accord‑
ing the sharding rules, DBPlusEngine‑Scaling create a scaling job with 4 main phases.

1. Preparing Phase.
2. Inventory Phase.
3. Incremental Phase.
4. Switching Phase.

Fig. 18: Workflow

11.4.2 Phase Description

Preparing Phase

DBPlusEngine‑Scaling will check the datasource connectivity and permissions, statistic the amount of inventory data,
record position of log, shard tasks based on amount of inventory data and the parallelism set by the user.

419



Beijing SphereEx Technology Co., Ltd.

Inventory Phase

Executing the Inventory data migration tasks sharded in preparing phase. DBPlusEngine‑Scaling uses JDBC to query
inventory data directly from data nodes and write to the new cluster using new rules.

Incremental Phase

Thedata indatanodes is still changingduring the inventoryphase, soDBPlusEngine‑Scalingneed to synchronize these
incremental data to new data nodes. Different databases have different implementations, but generally implemented
by change data capture function based on replication protocols or WAL logs.

■ MySQL：subscribe and parse binlog.
■ PostgreSQL：official logic replication test_decoding.

These captured incremental data, DBPlusEngine also write to the new cluster using new rules.

Switching Phase

In this phase, theremay be a temporary read only time, make the data in old data nodes static so that the incremental
phase complete fully. The read only time is range seconds to minutes, it depends on the amount of data and the
checking data. After finished, DBPlusEngine can switch the configuration by register‑center and config‑center, make
application use new sharding rule and new data nodes.

11.5 Encryption

11.5.1 Process Details

DBPlusEngine can encrypt the plaintext by parsing and rewriting SQL according to the encryption rule, and store the
plaintext (optional) and ciphertext data to the database at the same time. Queries data only extracts the ciphertext
data from database and decrypts it, and finally returns the plaintext to user. DBPlusEngine transparently process of
data encryption, so that users do not need to know to the implementation details of it, use encrypted data just like as
regular data. In addition, DBPlusEngine can provide a relatively complete set of solutionswhether the online business
system has been encrypted or the new online business system uses the encryption function.

420

https://www.postgresql.org/docs/9.4/test-decoding.html


Beijing SphereEx Technology Co., Ltd.

Overall Architecture

Fig. 19: 1

Encrypt module intercepts SQL initiated by user, analyzes and understands SQL behavior through the SQL syntax
parser. According to the encryption rules passed by the user, find out the fields that need to be encrypted/decrypted
and the encryptor/decryptor used to encrypt/decrypt the target fields, and then interactwith the underlying database.
DBPlusEngine will encrypt the plaintext requested by the user and store it in the underlying database; and when the
user queries, the ciphertext will be taken out of the database for decryption and returned to the end user. DBPlusEn‑
gine shields the encryption of data, so that users do not need to perceive the process of parsing SQL, data encryption,
and data decryption, just like using ordinary data.

Encryption Rule

Before explaining the whole process in detail, we need to understand the encryption rules and configuration, which
is the basis of understanding the whole process. The encryption configuration is mainly divided into four parts: data
source configuration, encrypt algorithm configuration, encryption table rule configuration, and query attribute con‑
figuration. The details are shown in the following figure:

421



Beijing SphereEx Technology Co., Ltd.

Fig. 20: 2

Datasource Configuration：The configuration of DataSource.
Encrypt Algorithm Configuration：What kind of encryption strategy to use for encryption and decryption. Currently
DBPlusEngine has five built‑in encryption/decryption strategies: AES, MD5, RC4, SM3, and SM4. Users can also imple‑
ment a set of encryption/decryption algorithms by implementing the interface provided by DBPlusEngine.
Encryption Table Configuration：Show the DBPlusEngine data table which column is used to store cipher column
data (cipherColumn), which column is used to store plain text data (plainColumn), and which column users want to
use for SQL writing (logicColumn)

How to understand Which column do users want to use to write SQL (logicColumn)?
We can understand according to the meaning of DBPlusEngine. The ultimate goal of DBPlusEngine is to
shield the encryption of the underlying data, that is, we do not want users to know how the data is en‑
crypted/decrypted, how to store plaintext data in plainColumn, and ciphertext data in cipherColumn. In
other words, we do not even want users to know the existence and use of plainColumn and cipherColumn.
Therefore, we need to provide users with a column in conceptual. This column can be separated from the
real column of the underlying database. It can be a real column in the database table or not, so that the
user can freely change the plainColumn and The column name of cipherColumn. Or delete plainColumn
and choose to never store plain text and only store cipher text. As long as the user’s SQL is written accord‑
ing to this logical column, and the correct mapping relationship between logicColumn and plainColumn,
cipherColumn is given in the encryption rule.
Why do you do this? The answer is at the end of the article, that is, to enable the online services to seam‑
lessly, transparently, and safely carry out data encryption migration.

422



Beijing SphereEx Technology Co., Ltd.

Query Attribute configuration：When the plaintext data and ciphertext data are stored in the underlying database ta‑
ble at the same time, this attribute switch is used to decidewhether to directly query the plaintext data in the database
table to return, or to query the ciphertext data and decrypt it through DBPlusEngine to return.

Encryption Process

For example, if there is a table in the database called t_user, there are actually two fields pwd_plain in this table, used
to store plain text data, pwd_cipher, used to store cipher text data, anddefine logicColumnaspwd. Then,whenwriting
SQL, users should write to logicColumn, that is, INSERT INTO t_user SET pwd = '123'. DBPlusEngine receives the SQL,
and through the encryption configuration provided by the user, finds that pwd is a logicColumn, so it decrypt the
logical column and its corresponding plaintext data. As can be seen that DBPlusEngine has carried out the column‑
sensitive and data‑sensitivemapping conversion of the logical column facing the user and the plaintext and ciphertext
columns facing the underlying database. As shown below:

Fig. 21: 3

This is also the coremeaning of DBPlusEngine, which is to separate user SQL from the underlying data table structure
according to the encryption rules provided by the user, so that the SQLwriter by user no longer depends on the actual
database table structure. The connection, mapping, and conversion between the user and the underlying database
are handled by DBPlusEngine. Why should we do this? It is still the same : in order to enable the online business to
seamlessly, transparently and safely perform data encryption migration.
In order to make the reader more clearly understand the core processing flow of DBPlusEngine, the following picture
shows the processing flow and conversion logic when using DBPlusEngine to add, delete, modify and check, as shown
in the following figure.

423



Beijing SphereEx Technology Co., Ltd.

Fig. 22: 4

11.5.2 Detailed Solution

After understanding theDBPlusEngine encryptionprocess, you can combine the encryption configuration and encryp‑
tion process with the actual scenario. All design and development are to solve the problems encountered in business
scenarios. So for the business scenario requirementsmentioned earlier, how should DBPlusEngine be used to achieve
business requirements?

New Business

Business scenario analysis: The newly launched business is relatively simple because everything starts from scratch
and there is no historical data cleaning problem.
Solution description: After selecting the appropriate encrypt algorithm, such as AES, you only need to configure the
logical column (write SQL for users) and the ciphertext column (the data table stores the ciphertext data). It can also
be different **. The recommended configuration is as follows (shown in Yaml format):
‑!ENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes‑key‑value: 123456abc

tables:

424



Beijing SphereEx Technology Co., Ltd.

t_user:
columns:
pwd:
cipherColumn: pwd
encryptorName: aes_encryptor

With this configuration, DBPlusEngine only needs to convert logicColumn and cipherColumn. The underlying data
table does not store plain text, only cipher text. This is also a requirement of the security audit part. If users want to
store plain text and cipher text together in the database, they just need to add plainColumn configuration. The overall
processing flow is shown below:

Fig. 23: 5

Online Business Transformation

Business scenario analysis: As the business is already running online, theremust be a large amount of plain text histor‑
ical data stored in the database. The current challenges are how to enable historical data to be encrypted and cleaned,
how to enable incremental data to be encrypted, andhow to allowbusinesses to seamlessly and transparentlymigrate
between the old and new data systems.
Solutiondescription: Beforeprovidingasolution, let’sbrainstorm: First, if theoldbusinessneeds tobedesensitized, it
must have stored very important and sensitive information. This information has a high gold content and the business
is relatively important. If it is broken, the whole team KPI is over. Therefore, it is impossible to suspend business
immediately, prohibit writing of new data, encrypt and clean all historical data with an encrypt algorithm, and then
deploy the previously reconstructed code online, so that it can encrypt anddecrypt online and incremental data. Such

425



Beijing SphereEx Technology Co., Ltd.

a simple and rough way, based on historical experience, will definitely not work.
Thenanother relatively safe approach is to rebuild apre‑release environment exactly like theproduction environment,
and then encrypt the Inventory plaintext data of the production environment through the relevant migration and
washing tools and store it in the pre‑release environment. The Increment data is encrypted by tools such as MySQL
replica query and the business party’s owndevelopment, encrypted and stored in the database of the pre‑release en‑
vironment, and then the refactored code can be deployed to the pre‑release environment. In this way, the production
environment is a set of environment for modified/queries with plain text as the core; the pre‑release environment
is a set of encrypt/decrypt queries modified with ciphertext as the core. After comparing for a period of time, the
production flow can be cut into the pre‑release environment at night. This solution is relatively safe and reliable, but it
takesmore time, manpower, capital, and costs. It mainly includes: pre‑release environment construction, production
code rectification, and related auxiliary tool development. Unless there is noway to go, business developers generally
go from getting started to giving up.
Business developers must hope: reduce the burden of capital costs, do not modify the business code, and be able to
safely and smoothly migrate the system. So, the encryption function module of DBPlusEngine was born. It can be
divided into three steps:

1. Before systemmigration
Assuming that the systemneeds to encrypt the pwdfield of t_user, the business side uses DBPlusEngine to replace the
standardized JDBC interface, which basically requires no additionalmodification (we also provide Spring Boot Starter,
Spring Namespace, YAML and other access methods to achieve different services demand). In addition, demonstrate
a set of encryption configuration rules, as follows:
‑!ENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes‑key‑value: 123456abc

tables:
t_user:
columns:
pwd:
plainColumn: pwd
cipherColumn: pwd_cipher
encryptorName: aes_encryptor

queryWithCipherColumn: false

According to the above encryption rules, we need to add a column called pwd_cipher in the t_user table, that is, ci‑
pherColumn, which is used to store ciphertext data. At the same time, we set plainColumn to pwd, which is used to
store plaintext data, and logicColumn is also set to pwd. Because the previous SQL was written using pwd, that is, the
SQLwaswritten for logical columns, so the business code did not need to be changed. Through DBPlusEngine, for the
incremental data, the plain text will be written to the pwd column, and the plain text will be encrypted and stored in
the pwd_cipher column. At this time, because queryWithCipherColumn is set to false, for business applications, the
plain text column of pwd is still used for query storage, but the cipher text data of the new data is additionally stored
on the underlying database table pwd_cipher. The processing flow is shown below:

426



Beijing SphereEx Technology Co., Ltd.

Fig. 24: 6

When the newly added data is inserted, it is encrypted as ciphertext data through DBPlusEngine and stored in the
cipherColumn. Now it is necessary to process historical plaintext inventory data. As DBPlusEngine currently does
not provide the corresponding migration and washing tools, the business party needs to encrypt and store the
plain text data in pwd to pwd_cipher.

2. During systemmigration
The incremental data has been stored by DBPlusEngine in the ciphertext column and the plaintext is stored in the
plaintext column; after the historical data is encrypted and cleaned by the business party itself, the ciphertext is also
stored in the ciphertext column. That is to say, the plaintext and the ciphertext are stored in the current database.
Since the queryWithCipherColumn = false in the configuration item, the ciphertext has never been used. Nowwe need
to set the queryWithCipherColumn in the encryption configuration to true in order for the system to cut the ciphertext
data for query. After restarting the system, we found that the systembusiness is normal, but DBPlusEngine has started
to extract the ciphertext data from the database, decrypt it and return it to the user; and for the user’s insert, delete
and update requirements, the original data will still be stored The plaintext column, the encrypted ciphertext data is
stored in the ciphertext column.
Although the business system extracts the data in the ciphertext column and returns it after decryption; however, it
will still save a copy of the original data to the plaintext column during storage. Why? The answer is: in order to be
able to roll back the system. Because as long as the ciphertext andplaintext always exist at the same time,we can
freely switch the business query to cipherColumn or plainColumn through the configuration of the switch item.
In other words, if the system is switched to the ciphertext column for query, the system reports an error and needs to
be rolled back. Then just set queryWithCipherColumn = false, Apache ShardingSphere will restore, that is, start using
plainColumn to query again. The processing flow is shown in the following figure:

427



Beijing SphereEx Technology Co., Ltd.

Fig. 25: 7

3. After systemmigration
Due to the requirements of the security audit department, it is generally impossible for the business system to keep
the plaintext and ciphertext columns of the database permanently synchronized. We need to delete the plaintext data
after the system is stable. That is, we need to delete plainColumn (ie pwd) after systemmigration. The problem is that
now the business code is written for pwd SQL, delete the pwd in the underlying data table stored in plain text, and use
pwd_cipher to decrypt to get the original data, does that mean that the business side needs to rectify all SQL, thus Do
not use the pwd column that is about to be deleted? Remember the core meaning of our encrypt module?

This is also the core meaning of encrypt module. According to the encryption rules provided by the user,
the user SQL is separated from the underlying database table structure, so that the user’s SQL writing no
longer depends on the actual database table structure. The connection,mapping, and conversion between
the user and the underlying database are handled by DBPlusEngine.

Yes, because of the existence of logicColumn, users write SQL for this virtual column. DBPlusEngine can map this
logical columnand the ciphertext column in the underlying data table. So the encryption configuration aftermigration
is:
‑!ENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes‑key‑value: 123456abc

tables:
t_user:

428



Beijing SphereEx Technology Co., Ltd.

columns:
pwd: # pwd and pwd_cipher transformation mapping
cipherColumn: pwd_cipher
encryptorName: aes_encryptor

The processing flow is as follows:

Fig. 26: 8

So far, the online service encryption and rectification solutions have all been demonstrated. We provide Java, YAML,
Spring Boot Starter, Spring Namespace multiple ways for users to choose to use, and strive to fulfill business require‑
ments. The solution has been continuously launched on JD Digits, providing internal basic service support.

11.5.3 The advantages of Middleware encryption service

1. Transparent data encryption process, users do not need to pay attention to the implementation details of en‑
cryption.

2. Provide a variety of built‑in, third‑party (AKS) encryption strategies, users only need to modify the configuration
to use.

3. Provides a encryption strategy API interface, users can implement the interface to use a custom encryption strat‑
egy for data encryption.

4. Support switching different encryption strategies.

429



Beijing SphereEx Technology Co., Ltd.

5. For online services, it is possible to store plaintext data and ciphertext data synchronously, and decide whether
to use plaintext or ciphertext columns for query through configuration. Without changing the business query
SQL, the on‑line system can safely and transparently migrate data before and after encryption.

11.5.4 Solution

DBPlusEngine has provided two data encryption solutions, corresponding to two DBPlusEngine encryption and de‑
cryption interfaces, i.e., EncryptAlgorithm and QueryAssistedEncryptAlgorithm.
On the one hand, DBPlusEngine has provided internal encryption and decryption implementations for users, which
canbe usedby themonly after configuration. On the other hand, to satisfy users’requirements for different scenarios,
we have also opened relevant encryption and decryption interfaces, according to which, users can provide specific
implementation types. Then, after simple configurations, DBPlusEngine can use encryption and decryption solutions
defined by users themselves to desensitize data.

EncryptAlgorithm

The solution has provided twomethods encrypt() and decrypt() to encrypt/decrypt data for encryption.
When users INSERT, DELETE and UPDATE, DBPlusEngine will parse, rewrite and route SQL according to the configura‑
tion. It will also use encrypt() to encrypt data and store them in the database. When using SELECT, they will decrypt
sensitive data from the database with decrypt() reversely and return them to users at last.
Currently, DBPlusEngine has provided three types of implementations for this kind of encrypt solution, MD5 (irre‑
versible), AES (reversible) and RC4 (reversible), which can be used after configuration.

QueryAssistedEncryptAlgorithm

Comparedwith the first encrypt scheme, this one ismore secure and complex. Its concept is: even the same data, two
same user passwords for example, should not be stored as the same desensitized form in the database. It can help to
protect user information and avoid credential stuffing.
This scheme provides three functions to implement, encrypt(), decrypt() and queryAssistedEncrypt(). In encrypt()
phase, users can set somevariable, timestamp for example, and encrypt a combinationof original data + variable. This
method canmake sure the encrypted data of the same original data are different, due to the existence of variables. In
decrypt() phase, users can use variable data to decrypt according to the encryption algorithms set formerly.
Though thismethod can indeed increase data security, another problem can appearwith it: as the same data is stored
in the database in different content, users may not be able to find out all the same original data with equivalent
query (SELECT FROM table WHERE encryptedColumnn = ?) according to this encryption column. Because of it, we
have brought out assistant query column, which is generated by queryAssistedEncrypt(). Different from decrypt(),
this method uses another way to encrypt the original data; but for the same original data, it can generate consistent
encryption data. Users can store data processed by queryAssistedEncrypt() to assist the query of original data. So
there may be onemore assistant query column in the table.
queryAssistedEncrypt() and encrypt() can generate and store different encryption data; decrypt() is reversible and
queryAssistedEncrypt() is irreversible. So when querying the original data, we will parse, rewrite and route SQL auto‑
matically. We will also use assistant query column to do WHERE queries and use decrypt() to decrypt encrypt() data
and return them to users. All these can not be felt by users.
For now, DBPlusEngine has abstracted the concept to be an interface for users to develop rather than providing ac‑
curate implementation for this kind of encrypt solution. DBPlusEngine will use the accurate implementation of this
solution provided by users to desensitize data.

430



Beijing SphereEx Technology Co., Ltd.

11.6 Shadow

11.6.1 Overall Architecture

DBPlusEngine makes shadow judgments on incoming SQL by parsing SQL, according to the shadow rules set by the
user in the configuration file, route to production DB or shadow DB.

Fig. 27: Execute Process

431



Beijing SphereEx Technology Co., Ltd.

11.6.2 Shadow Rule

Shadow rules include shadow data source mapping, shadow tables, and shadow algorithms.

Fig. 28: Shadow Rule

data‑sources：Production data source name and shadow data source namemappings.
tables：Shadow tables related to stress testing. Shadow tablesmust exist in the specified shadowDB, and the shadow
algorithm needs to be specified.
shadow‑algorithms：SQL routing shadow algorithm.
default‑shadow‑algorithm‑name：Default shadow algorithm. Optional item, the default matching algorithm for ta‑
bles that not configured with the shadow algorithm.

432



Beijing SphereEx Technology Co., Ltd.

11.6.3 Routing Process

Take the INSERT statement as an example. When writing data DBPlusEngine will parse the SQL, and then construct a
routing chain according to the rules in the configuration file.
In the current version of the function, the shadow function is the last execution unit in the routing chain, that is, if there
are other rules that require routing, such as sharding, DBPlusEngine will first route to a certain database according to
the sharding rules, and then perform the shadow routing decision process.
It determined that the execution of SQL satisfies the configuration of the shadow rule, the data routed to the corre‑
sponding shadow database, and the production data remains unchanged.

11.6.4 Shadow Judgment Process

The Shadow DB performs shadow judgment on the executed SQL statements.
Shadow judgment supports two types of algorithms, users can choose one or combine them according to actual busi‑
ness needs.

DML Statement

Support two type shadow algorithms.
The shadow judgment first judgeswhether there is an intersection betweenSQL related tables and configured shadow
tables.
If there is an intersection, determine the shadow algorithm associated with the shadow table of the intersection in
turn，and any one of themwas successful. SQL statement executed shadow DB.
If shadow tables have no intersection, or shadow algorithms are unsuccessful, SQL statement executed production
DB.

DDL Statement

Only support note shadow algorithm.
In the pressure testing scenarios, DDL statements are not need tested generally. It is mainly used when initializing or
modifying the shadow table in the shadow DB.
The shadow judgment first judges whether the executed SQL contains notes.
If contains notes, determine the note shadow algorithms in the shadow rule in turn, and any one of themwas success‑
ful. SQL statement executed shadow DB.
TheexecutedSQLdoesnot containnotes, or shadowalgorithmsareunsuccessful, SQL statement executedproduction
DB.

11.6.5 Shadow Algorithm

Shadow algorithm details, please refer to List

433



Beijing SphereEx Technology Co., Ltd.

11.6.6 Use Example

Scenario

Assume that the e‑commerce website wants to perform pressure testing on the order business,
the pressure testing related table t_order is a shadow table，the production data executed to the ds production DB,
and the pressure testing data executed to the database ds_shadow shadow DB.

Shadow DB configuration

The shadow configuration for example(YAML)：
data‑sources:
shadow‑data‑source:
source‑data‑source‑name: ds
shadow‑data‑source‑name: ds‑shadow

tables:
t_order:
data‑source‑names: shadow‑data‑source
shadow‑algorithm‑names:
‑ simple‑hint‑algorithm
‑ user‑id‑value‑match‑algorithm

shadow‑algorithms:
simple‑hint‑algorithm:
type: SIMPLE_HINT
props:
foo: bar

user‑id‑value‑match‑algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

sql‑parser:
sql‑comment‑parse‑enabled: true

Note: If you use the Hint shadow algorithm, the parse SQL comment configuration item sql‑comment‑parse‑enabled:
true need to be turned on. turned off by default. please refer to SQL‑PARSER Configuration

Shadow DB environment

■ Create the shadow DB ds_shadow.
■ Create shadow tables, tables structure must be consistent with the production environment. Assume that the

t_order table created in the shadow DB. Create table statement need to add SQL comment /*foo:bar,.. .*/.
CREATE TABLE t_order (order_id INT(11) primary key, user_id int(11) not null, ...) /*foo:bar,...*/

Execute to the shadow DB.
Note: If use the MySQL client for testing, the link needs to use the parameter ‑c, for example:
mysql> mysql ‑u root ‑h127.0.0.1 ‑P3306 ‑proot ‑c

Parameter description: keep the comment, send the comment to the server
Execute SQL containing annotations, for example:

434

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/


Beijing SphereEx Technology Co., Ltd.

SELECT * FROM table_name /*shadow:true,foo:bar*/;

Comment statement will be intercepted by the MySQL client if parameter ‑c not be used, for example:
SELECT * FROM table_name;

Affect test results.

Shadow algorithm example

1. Column shadow algorithm example
Assume that the t_order table contains a list of user_id to store the order user ID. The data of the order created by the
user whose user ID is 0 executed to shadow DB, other data executed to production DB.
INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...)

No need to modify any SQL or code, only need to control the data of the testing to realize the pressure testing.
Column Shadow algorithm configuration (YAML):
shadow‑algorithms:
user‑id‑value‑match‑algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

Note: When the shadow table uses the column shadow algorithm, the same type of shadow operation (INSERT, UP‑
DATE, DELETE, SELECT) currently only supports a single column.

2. Hint shadow algorithm example
Assume that the t_order table does not contain columns that canmatching. Executed SQL statement need to add SQL
note /*foo:bar,.. .*/
SELECT * FROM t_orderWHERE order_id = xxx /*foo:bar,...*/

SQL executed to shadow DB, other data executed to production DB.
Note Shadow algorithm configuration (YAML):
shadow‑algorithms:
simple‑hint‑algorithm:
type: SIMPLE_HINT
props:
foo: bar

3. Hybrid two shadow algorithm example
Assume that the pressure testing of the t_order gauge needs to cover the above two scenarios.
INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...);

SELECT * FROM t_orderWHERE order_id = xxx /*foo:bar,...*/;

Both will be executed to shadow DB, other data executed to production DB.
2 type of shadow algorithm example (YAML):
shadow‑algorithms:
user‑id‑value‑match‑algorithm:
type: VALUE_MATCH
props:

435



Beijing SphereEx Technology Co., Ltd.

operation: insert
column: user_id
value: 0

simple‑hint‑algorithm:
type: SIMPLE_HINT
props:
foo: bar

4. Default shadow algorithm example
Assume that the column shadow algorithm used for the t_order, all other shadow tables need to use the note shadow
algorithm.
INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...);

INSERT INTO t_xxx_1 (order_item_id, order_id, ...) VALUES (xxx..., xxx..., ...) /*foo:bar,...*/;

SELECT * FROM t_xxx_2WHERE order_id = xxx /*foo:bar,...*/;

SELECT * FROM t_xxx_3WHERE order_id = xxx /*foo:bar,...*/;

Both will be executed to shadow DB, other data executed to production DB.
Default shadow algorithm configuration (YAML):
data‑sources:
shadow‑data‑source:
source‑data‑source‑name: ds
shadow‑data‑source‑name: ds‑shadow

tables:
t_order:
data‑source‑names: shadow‑data‑source
shadow‑algorithm‑names:
‑ simple‑hint‑algorithm
‑ user‑id‑value‑match‑algorithm

default‑shadow‑algorithm‑name: simple‑note‑algorithm
shadow‑algorithms:
simple‑hint‑algorithm:
type: SIMPLE_HINT
props:
foo: bar

user‑id‑value‑match‑algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

sql‑parser:
sql‑comment‑parse‑enabled: true

Note: The default shadow algorithm only supports Hint shadow algorithm. When using ensure that the configuration
items of props in the configuration file are less than or equal to those in the SQL comment, And the specific configura‑
tion of the configuration file should same as the configuration written in the SQL comment. The fewer configuration
items in the configuration file, the looser the matching conditions
simple‑note‑algorithm:
type: SIMPLE_HINT
props:
foo: bar
foo1: bar1

For example, the‘props’item have 2 configure, the following syntax can be used in SQL:

436



Beijing SphereEx Technology Co., Ltd.

SELECT * FROM t_xxx_2WHERE order_id = xxx /*foo:bar, foo1:bar1*/

SELECT * FROM t_xxx_2WHERE order_id = xxx /*foo:bar, foo1:bar1, foo2:bar2, ...*/

simple‑note‑algorithm:
type: SIMPLE_HINT
props:
foo: bar

For example, the‘props’item have 1 configure, the following syntax can be used in SQL:
SELECT * FROM t_xxx_2WHERE order_id = xxx /*foo:foo*/

SELECT * FROM t_xxx_2WHERE order_id = xxx /*foo:foo, foo1:bar1, ...*/

11.7 Login Authentication

11.7.1 MySQL Authentication Protocol

https://dev.mysql.com/doc/refman/8.0/en/authentication‑plugins.html

11.7.2 PostgreSQL Authentication Protocol

https://www.postgresql.org/docs/14/auth‑methods.html

11.7.3 OpenGauss Authentication Protocol

https://opengauss.org/en/docs/2.1.0/docs/Developerguide/configuration‑file‑reference.html

11.7.4 LDAP

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

11.8 Data Migration

11.8.1 Explanation

The current data migration solution uses a completely new database cluster as the migration target.
This implementation has the following advantages:

1. No impact on the original data during migration.
2. No risk in case of migration failure.
3. Free from sharding policy limitations.

The implementation has the following disadvantages:
1. Redundant servers can exist for a certain period of time.
2. All data needs to be moved.

437

https://dev.mysql.com/doc/refman/8.0/en/authentication-plugins.html
https://www.postgresql.org/docs/14/auth-methods.html
https://opengauss.org/en/docs/2.1.0/docs/Developerguide/configuration-file-reference.html
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol


Beijing SphereEx Technology Co., Ltd.

A single data migration mainly consists of the following phases:
1. Preparation.
2. Stock data migration.
3. The synchronization of incremental data.
4. Traffic switching .

Fig. 29: Illustration

11.8.2 Execution Stage Explained

Preparation

In the preparation stage, the data migration module verifies data source connectivity and permissions, counts stock
data statistics, records the log and finally shards the tasks according to data volume and parallelism set by the users.

Stock datamigration

Execute the stock data migration tasks that have been sharded during preparation stage. The stock migration stage
uses JDBCqueries to read data directly from the source andwrite into the target based on the sharding rules and other
configurations.

438



Beijing SphereEx Technology Co., Ltd.

The Synchronization of incremental data

Since the duration of stock data migration depends on factors such as data volume and parallelism, it is necessary
to synchronize the data added to the business operations during this period. Different databases differ in technical
details, but in general they are all based on replication protocols or WAL logs to achieve the capture of changed data.

■ MySQL: subscribe and parse binlog
■ PostgreSQL: uses official logical replication test_decoding.

These incremental data captured are also written into the new data nodes by the data migration modules. When syn‑
chronizationof incremental data is basically completed (the incremental dataflow isnot interrupted since thebusiness
system is still in function), you can thenmove to the traffic switching stage.

Traffic Switching

During this stage, there may be a read‑only period of time, where data in the source data nodes is allowed to be in
static mode for a short period of time to ensure that the incremental synchronization can be fully completed. Users
can set this by shifting the database to read‑only status or by controlling the traffic flow generated from the source.
The length of this read‑only window depends on whether users need to perform consistency checks on the data and
the exact amount of data in this scenario. Once confirmed, the data migration is complete.
Users can then switch the read traffic or write traffic to Apache ShardingSphere.

11.8.3 References

Configurations of data migration

11.9 FAQ

11.9.1 [Driver] Why there may be an error when configuring both shardingsphere‑jdbc‑
spring‑boot‑starter and a spring‑boot‑starter of certain datasource pool(such as
druid)?

Answer:
1. Because the spring‑boot‑starter of certain datasource pool (such as druid) will be configured before

shardingsphere‑jdbc‑spring‑boot‑starter and create a default datasource, then conflict occur when
DBPlusEngine‑Driver create datasources.

2. A simple way to solve this issue is removing the spring‑boot‑starter of certain datasource pool, shardingsphere‑
jdbc create datasources with suitable pools.

11.9.2 [Driver] Why is xsd unable to be found when Spring Namespace is used?
Answer:
The use norm of Spring Namespace does not require to deploy xsd files to the official website. But considering some
users’needs, we will deploy them to DBPlusEngine’s official website.
Actually, META‑INF:raw‑latex:spring.schemas in the jar package of shardingsphere‑jdbc‑spring‑namespace has been
configuredwith thepositionof xsdfiles: META‑INF\namespace\sharding.xsdandMETA‑INF\namespace\replica‑query.
xsd, so you only need to make sure that the file is in the jar package.

439

https://www.postgresql.org/docs/9.4/test-decoding.html


Beijing SphereEx Technology Co., Ltd.

11.9.3 [Driver] Found a JtaTransactionManager in spring boot project when integrating with
transaction of XA

Answer:
1. shardingsphere‑transaction‑xa‑core include atomikos, it will trigger auto‑configuration mechanism in spring‑

boot, add@SpringBootApplication(exclude = JtaAutoConfiguration.class) will solve it.

11.9.4 [Proxy] In a Windows environment, I could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how to solve it?

Answer:
Somedecompression toolsmay truncate the file namewhendecompressing theDBPlusEngine‑Proxy binary package,
resulting in some classes not being found.
The solutions:
Open cmd.exe and execute the following command:
tar zxvf apache‑shardingsphere‑${RELEASE.VERSION}‑shardingsphere‑proxy‑bin.tar.gz

11.9.5 [Proxy]How toaddanew logic schemadynamicallywhenusingDBPlusEngine‑Proxy?
Answer:
When using DBPlusEngine‑Proxy, users can dynamically create or drop logic schema through DistSQL, the syntax is as
follows:
CREATE (DATABASE | SCHEMA) [IF NOT EXISTS] schemaName;

DROP (DATABASE | SCHEMA) [IF EXISTS] schemaName;

Example:
CREATE DATABASE sharding_db;

DROP SCHEMA sharding_db;

11.9.6 [Proxy] How to use suitable database tools when connecting DBPlusEngine‑Proxy?
Answer:

1. DBPlusEngine‑Proxy could be considered as amysql sever, so we recommend usingmysql command line tool to
connect to and operate it.

2. If users would like use a third‑party database tool, there may be some errors cause of the certain implementa‑
tion/options.

3. The currently tested third‑party database tools are as follows:
■ Navicat：11.1.13、15.0.20.
■ DataGrip：2020.1、2021.1 (turn on“introspect using jdbc metadata”in idea or datagrip).
■ WorkBench：8.0.25.

440



Beijing SphereEx Technology Co., Ltd.

11.9.7 [Proxy] When using a client such as Navicat to connect to DBPlusEngine‑Proxy, if
DBPlusEngine‑Proxy does not create a Schema or does not add a Resource, the client
connection will fail?

Answer:
1. Third‑party database tools will send some SQL query metadata when connecting to DBPlusEngine‑Proxy. When

DBPlusEngine‑Proxy does not create a schema or does not add a resource, DBPlusEngine‑Proxy cannot execute
SQL.

2. It is recommended to create schema and resource first, and then use third‑party database tools to connect.
3. Please refer to Related

the details about resource.

11.9.8 [Sharding] How to solve Cloud not resolve placeholder⋯in string value⋯ error?
Answer:
${...} or $‑>{...} can be used in inline expression identifiers, but the former one clashes with place holders in Spring
property files, so $‑>{...} is recommended to be used in Spring as inline expression identifiers.

11.9.9 [Sharding] Why does float number appear in the return result of inline expression?
Answer:
The division result of Java integers is also integer, but in Groovy syntax of inline expression, the division result of inte‑
gers is float number. To obtain integer division result, A/B needs to be modified as A.intdiv(B).

11.9.10 [Sharding] If sharding database is partial, should tables without sharding database
& table configured in sharding rules?

Answer:
No, DBPlusEngine will recognize it automatically.

11.9.11 [Sharding] When generic Long type SingleKeyTableShardingAlgorithm is used, why
doesClassCastException: Integer can not cast to Long exception appear?

Answer:
Youmustmake sure the field in database table consistent with that in sharding algorithms. For example, the field type
in database is int(11) and the sharding type corresponds to genetic type is Integer, if you want to configure Long type,
please make sure the field type in the database is bigint.

441



Beijing SphereEx Technology Co., Ltd.

11.9.12 [Sharding:raw‑latex:PROXY] When implementing the StandardShardingAlgorithm
custom algorithm, the specific type of Comparable is specified as Long, and the field
type in the database table is bigint, a ClassCastException: Integer can not cast to
Long exception occurs.

Answer：
When implementing the doShardingmethod, it is not recommended to specify the specific type of Comparable in the
method declaration, but to convert the type in the implementation of the doSharding method. You can refer to the
ModShardingAlgorithm#doSharding method.

11.9.13 [Sharding] Why are the default distributed auto‑augment key strategy provided by
DBPlusEngine not continuous andmost of them end with even numbers?

Answer:
ShardingSphere uses snowflake algorithms as the default distributed auto‑augment key strategy to make sure un‑
repeated and decentralized auto‑augment sequence is generated under the distributed situations. Therefore, auto‑
augment keys can be incremental but not continuous.
But the last four numbers of snowflake algorithm are incremental value within one millisecond. Thus, if concurrency
degree in one millisecond is not high, the last four numbers are likely to be zero, which explains why the rate of even
end number is higher.
In 3.1.0 version, the problem of endingwith even numbers has been totally solved, please refer to: https://github.com
/apache/shardingsphere/issues/1617

11.9.14 [Sharding] How to allow range query with using inline sharding strategy(BETWEEN
AND, >, <, >=, <=)?

Answer:
1. Update to 4.1.0 above.
2. Configure(A tip here: then each range query will be broadcast to every sharding table):
■ Version 4.x: allow.range.query.with.inline.sharding to true (Default value is false).
■ Version 5.x: allow‑range‑query‑with‑inline‑sharding to true in InlineShardingStrategy (Default value is false).

11.9.15 [Sharding] Why does my custom distributed primary key do not work after imple‑
menting KeyGenerateAlgorithm interface and configuring type property?

Answer:
Service Provider Interface (SPI) is a kind of API for the third party to implement or expand. Except implementing inter‑
face, you also need to create a corresponding file in META‑INF/services to make the JVM load these SPI implementa‑
tions.
More detail for SPI usage, please search by yourself.
Other DBPlusEngine functionality implementation will take effect in the same way.

442

https://github.com/apache/shardingsphere/issues/1617
https://github.com/apache/shardingsphere/issues/1617
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html


Beijing SphereEx Technology Co., Ltd.

11.9.16 [Sharding] In addition to internal distributedprimarykey, doesShardingSphere sup‑
port other native auto‑increment keys?

Answer:
Yes. But there is restriction to the use of native auto‑increment keys, which means they cannot be used as sharding
keys at the same time.
Since DBPlusEngine does not have the database table structure and native auto‑increment key is not included in origi‑
nal SQL, it cannot parse that field to the sharding field. If the auto‑increment key is not sharding key, it can be returned
normally and is needless to be cared. But if the auto‑increment key is also used as sharding key, DBPlusEngine cannot
parse its sharding value, which will make SQL routed tomultiple tables and influence the rightness of the application.
The premise for returning native auto‑increment key is that INSERT SQL is eventually routed to one table. Therefore,
auto‑increment key will return zero when INSERT SQL returns multiple tables.

11.9.17 [Encryption] How to solve that data encryption can’t work with JPA?
Answer:
BecauseDDL for data encryption has not yet finished, JPA Entity cannotmeet theDDL andDMLat the same time, when
JPA that automatically generates DDL is used with data encryption.
The solutions are as follows:

1. Create JPA Entity with logicColumn which needs to encrypt.
2. Disable JPA auto‑ddl, For example setting auto‑ddl=none.
3. Create table manually. Table structure should use cipherColumn,plainColumn and assistedQueryColumn to re‑

place the logicColumn.

11.9.18 [DistSQL] How to set custom JDBC connection properties or connection pool proper‑
ties when adding a data source using DistSQL?

Answer:
1. If you need to customize JDBC connection properties, please take the urlSource way to define dataSource.
2. DBPlusEngine presets necessary connection pool properties, such asmaxPoolSize, idleTimeout, etc. If you need

to add or overwrite the properties, please specify it with PROPERTIES in the dataSource.
3. Please refer to Related introduction for above rules.

11.9.19 [DistSQL] How to solve Resource [xxx] is still used by [SingleTableRule]. exception
when dropping a data source using DistSQL?

Answer：
1. Resources referenced by rules cannot be deleted
2. If the resource is only referenced by single table rule, and the user confirms that the restriction can be ignored,

the optional parameter ignore single tables can be added to perform forced deletion
UNREGISTER STORAGE UNIT dataSourceName [, dataSourceName] ... [ignore single tables]

443



Beijing SphereEx Technology Co., Ltd.

11.9.20 [DistSQL]How to solve Failed to get driver instance for jdbcURL=xxx. exceptionwhen
adding a data source using DistSQL?

Answer：
DBPlusEngine Proxy do not have jdbc driver during deployment. Some example of this include mysql‑connector. To
use it otherwise following syntax can be used:
REGISTER STORAGE UNIT dataSourceName [..., dataSourceName]

11.9.21 [Other] How to debug when SQL can not be executed rightly in DBPlusEngine?
Answer:
sql.showconfiguration is provided inDBPlusEngine‑Proxy andpost‑1.5.0 versionof DBPlusEngine‑Driver, enabling the
context parsing, rewritten SQL and the routed data source printed to info log. sql.show configuration is off in default,
and users can turn it on in configurations.
A Tip: Property sql.show has changed to sql‑show in version 5.x.

11.9.22 [Other] Why do some compiling errors appear? Why did not the IDEA index the gen‑
erated codes?

Answer:
DBPlusEngine uses lombok to enable minimal coding. For more details about using and installment, please refer to
the official website of lombok.
The codes under the package org.apache.shardingsphere.sql.parser.autogen are generated by ANTLR. You may exe‑
cute the following command to generate codes:
./mvnw ‑Dcheckstyle.skip=true ‑Drat.skip=true ‑Dmaven.javadoc.skip=true ‑Djacoco.skip=true ‑DskipITs ‑DskipTests install ‑T1C

The generated codes such as org.apache.shardingsphere.sql.parser.autogen.PostgreSQLStatementParser may be too
large to be indexed by the IDEA. Youmay configure the IDEA’s property idea.max.intellisense.filesize=10000.

11.9.23 [Other] In SQLSever andPostgreSQL,whydoes theaggregation columnwithout alias
throw exception?

Answer:
SQLServer and PostgreSQL will rename aggregation columns acquired without alias, such as the following SQL:
SELECT SUM(num), SUM(num2) FROM tablexxx;

Columns acquiredby SQLServer are empty string and (2); columns acquiredbyPostgreSQL are empty sumand sum(2).
It will cause error because DBPlusEngine is unable to find the corresponding column.
The right SQL should be written as:
SELECT SUM(num) AS sum_num, SUM(num2) AS sum_num2 FROM tablexxx;

444

https://projectlombok.org/download.html


Beijing SphereEx Technology Co., Ltd.

11.9.24 [Other] Why does Oracle database throw“Order by valuemust implements Compa‑
rable”exception when using Timestamp Order By?

Answer:
There are two solutions for the above problem: 1. Configure JVM parameter“‑oracle.jdbc.J2EE13Compliant=true”2.
Set System.getProperties().setProperty(“oracle.jdbc.J2EE13Compliant”,“true”) codes in the initialization of the
project.
Reasons:
org.apache.shardingsphere.sharding.merge.dql.orderby.OrderByValue#getOrderValues():
private List<Comparable<?>> getOrderValues() throws SQLException {
List<Comparable<?>> result = new ArrayList<>(orderByItems.size());
for (OrderByItem each : orderByItems) {
Object value = queryResult.getValue(each.getIndex(), Object.class);
Preconditions.checkState(null == value || value instanceof Comparable, "Order by value must implements Comparable");
result.add((Comparable<?>) value);

}
return result;

}

After using resultSet.getObject(int index), for TimeStamp oracle, the system will decide whether to return
java.sql.TimeStamp or define oralce.sql.TIMESTAMP according to the property of oracle.jdbc.J2EE13Compliant. See
oracle.jdbc.driver.TimestampAccessor#getObject(int var1) method in ojdbc codes for more detail:
Object getObject(int var1) throws SQLException {
Object var2 = null;
if(this.rowSpaceIndicator == null) {
DatabaseError.throwSqlException(21);

}

if(this.rowSpaceIndicator[this.indicatorIndex + var1] != ‑1) {
if(this.externalType != 0) {
switch(this.externalType) {
case 93:
return this.getTimestamp(var1);

default:
DatabaseError.throwSqlException(4);
return null;

}
}

if(this.statement.connection.j2ee13Compliant) {
var2 = this.getTimestamp(var1);

} else {
var2 = this.getTIMESTAMP(var1);

}
}

return var2;
}

445



Beijing SphereEx Technology Co., Ltd.

11.9.25 [Other] In Windows environment,when cloning DBPlusEngine source code through
Git, why prompt filename too long and how to solve it?

Answer:
To ensure the readability of source code,the DBPlusEngine Coding Specification requires that the naming of
classes,methods and variables be literal and avoid abbreviations,which may result in Some source files have long
names.
Since the Git version of Windows is compiled using msys,it uses the old version of Windows Api,limiting the file name
to nomore than 260 characters.
The solutions are as follows:
Open cmd.exe (you need to add git to environment variables) and execute the following command to allow git sup‑
porting log paths:
git config ‑‑global core.longpaths true

If we use windows 10, also need enable win32 log paths in registry editor or group strategy(need reboot): > Create the
registry key HKLM\SYSTEM\CurrentControlSet\Control\FileSystem LongPathsEnabled (Type: REG_DWORD) in registry
editor, and be set to 1. > Or click“setting”button in systemmenu, print“Group Policy”to open a newwindow“Edit
Group Policy”, and then click‘Computer Configuration’>‘Administrative Templates’>‘System’>‘Filesystem’
, and then turn on‘Enable Win32 long paths’option.
Reference material:
https://docs.microsoft.com/zh‑cn/windows/desktop/FileIO/naming‑a‑file https://ourcodeworld.com/articles/read
/109/how‑to‑solve‑filename‑too‑long‑error‑in‑git‑powershell‑and‑github‑application‑for‑windows

11.9.26 [Other] How to solve Type is required error?
Answer:
In DBPlusEngine, many functionality implementation are uploaded through SPI, such as Distributed Primary Key.
These functions load SPI implementation by configuring the type ，so the type must be specified in the configura‑
tion file.

11.9.27 [Other] How to speed up themetadata loading when service starts up?
Answer:

1. Update to 4.0.1 above, which helps speed up the process of loading table metadata.
2. Configure:
■ max.connections.size.per.query (Default value is 1) higher referring to connection pool you adopt(Version >=

3.0.0.M3 & Version < 5.0.0).
■ max‑connections‑size‑per‑query (Default value is 1) higher referring to connection pool you adopt(Version >=

5.0.0).

446

https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows


Beijing SphereEx Technology Co., Ltd.

11.9.28 [Other] The ANTLR plugin generates codes in the same level directory as src, which
is easy to commit bymistake. How to avoid it?

Answer:
Goto Settings ‑> Languages & Frameworks ‑> ANTLR v4 default project settings and configure the output directory of
the generated code as target/gen as shown:

Fig. 30: Configure ANTLR plugin

11.9.29 [Other] Why is the database sharding result not correct when using Proxool?
Answer:
Whenusing Proxool to configuremultiple data sources, each one of them should be configuredwith alias. It is because
Proxool would check whether existing alias is included in the connection pool or not when acquiring connections, so
without alias, each connection will be acquired from the same data source.
The followings are core codes from ProxoolDataSource getConnection method in Proxool:
if(!ConnectionPoolManager.getInstance().isPoolExists(this.alias)) {
this.registerPool();

}

For more alias usages, please refer to Proxool official website.

447

jetbrains://idea/settings?name=Languages+%26+Frameworks--ANTLR+v4+default+project+settings
http://proxool.sourceforge.net/configure.html


Beijing SphereEx Technology Co., Ltd.

11.9.30 [Other] The property settings in the configuration file do not take effect when inte‑
grating DBPlusEngine with Spring Boot 2.x ?

Answer:
Note that thepropertyname in theSpringBoot2.x environment is constrained toallowonly lowercase letters, numbers
and short transverse lines, [a‑z][0‑9] and ‑.
Reasons:
In the Spring Boot 2.x environment, DBPlusEngine binds the properties through Binder, and the unsatisfied property
name (such as camel case or underscore.) can throwaNullPointerException exceptionwhen the property setting does
not work to check the property value. Refer to the following error examples:
Underscore case: database_inline
spring.shardingsphere.rules.sharding.sharding‑algorithms.database_inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding‑algorithms.database_inline.props.algorithm‑expression=ds‑$‑>{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating beanwith name 'database_inline':
Initialization of bean failed; nested exception is java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.
...

Caused by: java.lang.NullPointerException: Inline sharding algorithm expression cannot be null.
at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.InlineShardingAlgorithm.

getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.InlineShardingAlgorithm.init(InlineShardingAlgorithm.

java:52)
at org.apache.shardingsphere.spring.boot.registry.AbstractAlgorithmProvidedBeanRegistry.

postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.

applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:431)
...

Camel case：databaseInline
spring.shardingsphere.rules.sharding.sharding‑algorithms.databaseInline.type=INLINE
spring.shardingsphere.rules.sharding.sharding‑algorithms.databaseInline.props.algorithm‑expression=ds‑$‑>{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating beanwith name 'databaseInline':
Initialization of bean failed; nested exception is java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.
...

Caused by: java.lang.NullPointerException: Inline sharding algorithm expression cannot be null.
at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.InlineShardingAlgorithm.

getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.InlineShardingAlgorithm.init(InlineShardingAlgorithm.

java:52)
at org.apache.shardingsphere.spring.boot.registry.AbstractAlgorithmProvidedBeanRegistry.

postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.

applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:431)
...

From the exception stack, the AbstractAlgorithmProvidedBeanRegistry.registerBean method calls PropertyUtil.
containPropertyPrefix (environment, prefix) , and PropertyUtil.containPropertyPrefix (environment, prefix) deter‑
mines that the configuration of the specified prefix does not exist, while the method uses Binder in an unsatisfied
property name (such as camelcase or underscore) causing property settings does not to take effect.

448



Beijing SphereEx Technology Co., Ltd.

12
Obtain

Contact Us in order to get the DBPlusEngine trial version.

449

https://sphere-ex.com/en/about/#contact

	Product Introduction
	What is DBPlusEngine?
	Core Concepts
	Architecture
	L1 Kernel Layer
	L2 Feature Layer
	L3 Ecosystem Layer

	Advantages
	The differences between the open source edition and the commercial edition
	Application Scenarios
	Independent DBPlus Engine-Driver products deployment
	Independent DBPlusEngine-Proxy products deployment
	Hybrid deployment with DBPlusEngine-Driver and DBPlusEngine-Proxy


	Features
	DB Compatibility
	Background
	Challenges
	Goal
	SQL Parser
	MySQL
	openGauss
	PostgreSQL
	SQLServer
	Oracle
	SQL92

	DB Protocol
	Feature Support
	MySQL
	User & Role
	Authorization

	PostgreSQL
	SQLServer
	Oracle
	SQL92


	Management
	Background
	Challenges
	Goal
	Core Concept
	Circuit Breaker
	Request Limit


	Sharding
	Background
	Vertical Sharding
	Horizontal Sharding

	Challenges
	Goal
	Core Concept
	Overview
	Table
	Logic Table
	Actual Table
	Binding Table
	Broadcast Table
	Single Table

	Data Node
	Uniform topology
	User-defined topology

	Sharding
	Sharding Key
	Sharding Algorithm
	Auto Sharding Algorithm
	User-Defined Sharding Algorithm

	Sharding Strategy
	SQL Hint

	Inline Expression
	Motivation
	Syntax Explanation
	Configuration
	Data Node
	Sharding Algorithm


	Distributed Primary Key
	Motivation
	Built-In Key Generator
	UUID
	SNOWFLAKE
	Principle
	Clock-Back


	Hint Sharding Route
	Motivation
	Mechanism


	Use Norms
	Background
	SQL
	SQL Support Status
	Totally Supported
	Regular Query
	Subquery
	Sharding value in expression
	Experimental Supported
	Subquery
	Join with cross databases
	Unsupported
	SQL Example


	Pagination
	Pagination Performance
	Performance Bottleneck
	Optimization of ShardingSphere

	Pagination Solution Optimization
	Pagination Sub-query



	Distributed Transaction
	Background
	Local Transaction
	2PC Transaction
	BASE Transaction

	Challenge
	Goal
	Core Concept
	Navigation
	XA
	BASE

	Use Norms
	Background
	Local Transaction
	Supported
	Unsupported

	XA
	Supported
	Unsupported
	XA Transaction managed by XA Statement

	BASE
	Supported
	Unsupported
	To Be Optimized



	Read/write splitting
	Background
	Challenges
	Goal
	Core Concept
	Primary Database
	Replica Database
	Primary Replica Replication
	Load Balance Strategy

	Use Norms
	Supported
	Unsupported


	HA
	Background
	Challenges
	Goal
	Core Concept
	High Availability Type
	Dynamic Readwrite-Splitting

	Use Norms
	Supported
	Unsupported


	Data Migration
	Background
	Challenges
	Goal
	Core Concept
	Nodes
	Cluster
	Source
	Target
	Data Migration Process
	Stock Data
	Incremental Data

	Limitations
	Supported Procedures
	Procedures not supported


	Scaling
	Definition
	Related Concepts
	Node
	Cluster

	Limitations
	Supported Items
	Unsupported Items

	How it works
	Range sharding/scaling-out
	Range sharding/scaling-in

	Related References

	Encryption
	Background
	Challenges
	Goal
	Core Concept
	Logic Column
	Logical column type (datatype)
	Cipher Column (cipherColumn)
	Ciphertext Column Type (cipherdatatype)
	Query Assistant Column (assistedQueryColumn)
	Query Assistant Column Type (ssistedQueryDataType)
	Plain Column (plainColumn)
	Plain Column Type (plainDataType)
	Encrypting (encrypting)
	Decrypting (decrypting)

	Implementation
	Cloud key management
	Encrypting

	Usage Norms
	Supported
	Unsupported


	Shadow DB
	Background
	Challenges
	Goal
	Core Concept
	Production Database
	Shadow Database
	Shadow Algorithm

	Usage Norms
	Supported
	Unsupported
	Hint based shadow algorithm
	Column based shadow algorithm



	Observability
	Background
	Challenges
	Goal
	Core Concept
	Agent
	APM
	Tracing
	Metrics

	Usage Norms
	Compile source code
	Agent configuration
	Used in DBPlusEngine-Proxy


	Traffic Dual Routing
	Background
	Challenges
	Goal
	Core Concept
	Tag
	Forwarding Strategy
	Forwarding Algorithm
	Load Balancing Algorithm

	Use Norms
	Supported
	Unsupported

	Related Reference

	Login Authentication
	Overview
	Characteristic

	Authority Control
	Definition
	Related Concepts
	User
	Initial user
	Ordinary users
	Role
	Privilege
	DistSQL
	DML
	DDL

	Impact on the System
	Principle
	Authority storage
	Authority provider
	Authentication process

	Relevant Reference

	DistSQL
	Background
	Challenges
	Goal
	Notice
	Related Reference

	Auto Scaling on Cloud (HPA)
	Definition
	Related Concepts
	HPA

	Impact on the System
	Limitations
	How it works
	Related References


	Technical White Paper
	Industry Trends
	Principles
	Technical Architecture
	Overall Architecture
	L1 Kernel Layer
	L2 Feature Layer
	L3 Ecosystem Layer
	DBPlusEngine-Driver
	DBPlusEngine-Proxy

	Security System
	Login Authentication
	Security of Management
	Access Security
	Storage Security

	Architecture Advantages

	Deployment and Maintenance
	Deployment Form
	Operation and Maintenance Tool Boot
	Management and Control Tool Console


	Product White Paper
	Why We Created DBPlusEngine
	Seamlessly Connect Data & Applications: SphereEx-DBPlusEngine
	Overview
	Features
	Product Capability

	SphereEx-DBPlusEngine Best Practices
	One-click Deployment
	Operation Visualization
	Improve Enterprise Efficiency
	Support Enterprises Digital Transformation

	Case study: solving a fintech user’s data storage and expansion with hundreds of billions of rows
	Customer Pain Points
	Customer Research
	Customer Transformation and Architecture

	Service Guarantee
	Service Feedback

	SphereEx-DBPlusEngine Operation Guide

	Performance White Paper
	TPC-C Benchmark Test
	Test Plan A: performance test with a single storage node and a computing node
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information
	BenchmarkSQL ——> MySQL
	BenchmarkSQL ——> Proxy ——> MySQL
	BenchmarkSQL ——> Driver ——> MySQL

	Glossary

	Test Plan B: Scale-out the storage node
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information
	BenchmarkSQL ——> Proxy ——> MySQL(1)
	BenchmarkSQL ——> Proxy ——> MySQL(2)
	BenchmarkSQL ——> Proxy ——> MySQL(4)

	Glossary

	Test Plan C: Scale-out the computing node.
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information
	BenchmarkSQL ——> Proxy ——> MySQL(4)
	BenchmarkSQL ——> Proxy(2) ——> MySQL(4)

	Glossary


	Data Integration Test
	Test Plan A: Data Export
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information
	Glossary

	Test Plan B: Data Import
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information
	Glossary


	Business Performance Test
	Data Sharding
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Results
	Monitoring Information
	Sysbench ——> Proxy ——> MySQL(4)
	Sysbench ——> MySQL


	Read/Write Splitting
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information
	sysbench ——> MySQL
	sysbench ——> Proxy ——> MySQL


	Data Encryption
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information

	Shadow Database
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information

	Probe
	Test Objective
	Test Tool
	Test Environment
	Test Procedure
	Test Result
	Monitoring Information


	Appendix
	JMH Instructions


	Quick Start
	DBPlusEngine-Driver
	Scenarios
	Restrictions
	Prerequisites
	Procedure

	DBPlusEngine-Proxy
	Application Scenarios
	Limitations
	Prerequisite
	Procedure


	User Manual
	DBPlusEngine-Driver
	Use of License in DBPlusEngine-Driver
	Background
	Configuration Method
	JAVA API
	Import Maven Dependency
	Configuration Example

	YAML
	Import Maven Dependency
	Configuration Example

	SpringBoot
	Import Maven Dependency
	Configuration Example

	Spring Name Space
	Import Maven Dependency
	Configuration Example


	Post-processing

	Java API
	Overview
	Usage
	Import Maven Dependency
	Create Data Source
	Use Data Source

	Mode Configuration
	Root Configuration
	Standalone Persist Configuration
	Cluster Persist Configuration

	Data Source
	Example

	Rules
	Sharding
	Root Configuration
	Sharding Table Configuration
	Sharding Automatic Table Configuration
	Sharding Strategy Configuration
	Standard Sharding Strategy Configuration
	Complex Sharding Strategy Configuration
	Hint Sharding Strategy Configuration
	None Sharding Strategy Configuration
	Key Generate Strategy Configuration

	Readwrite-splitting
	Root Configuration
	Readwrite-splitting Data Source Configuration

	HA
	Root Configuration
	Data Source Configuration
	Detect Heartbeat Configuration
	Database Discovery Type Configuration

	Encryption
	Configuration Entry
	Encrypt Table Rule Configuration
	Encrypt Column Rule Configuration
	Encrypt Algorithm Configuration

	Shadow DB
	Root Configuration
	Shadow Data Source Configuration
	Shadow Table Configuration
	Shadow Algorithm Configuration

	SQL Parser
	Root Configuration
	Cache option Configuration

	Mixed Rules
	Configuration Item Explanation



	YAML Configuration
	Overview
	Usage
	Import Maven Dependency
	YAML Format
	Create Data Source
	Use Data Source

	YAML Syntax Explanation
	Mode Configuration
	Configuration Item Explanation
	Cluster Mode


	Data Source
	Configuration Item Explanation
	Example

	Rules
	Sharding
	Configuration Item Explanation

	Readwrite-splitting
	Configuration Item Explanation
	Static Readwrite-splitting
	Dynamic Readwrite-splitting

	HA
	Encryption
	Configuration Item Explanation

	Shadow DB
	Configuration Item Explanation

	SQL-parser
	Configuration Item Explanation

	Mixed Rules
	Configuration Item Explanation



	JDBC Driver
	Overview
	Usage
	Import Maven Dependency
	Driver Usage
	Native Driver Usage
	Database Connection Pool Usage

	Configuration Explanation
	Driver Class Name
	URL Configuration Explanation



	Spring Boot Starter
	Overview
	Usage
	Import Maven Dependency

	Use DBPlusEngine Data Source in Spring
	Mode Configuration
	Configuration Item Explanation
	Memory Mode
	Standalone Mode
	Cluster Mode

	Data Source
	Use Native Data Source
	Configuration Item Explanation
	Example

	Use JNDI Data Source
	Configuration Item Explanation
	Example


	Rules
	Sharding
	Configuration Item Explanation
	Attention

	Readwrite splitting
	Configuration Item Explanation
	Static Readwrite-splitting
	Dynamic Readwrite-splitting

	HA
	Configuration Item Explanation

	Encryption
	Configuration Item Explanation
	Example

	Shadow DB
	Configuration Item Explanation

	SQL Parser
	Configuration Item Explanation

	Mixed Rules
	Configuration Item Explanation



	Spring Namespace
	Overview
	Usage
	Import Maven Dependency

	Configure Spring Bean
	Configuration Item Explanation
	Example

	Use DBPlusEngine Data Source in Spring
	Mode Configuration
	Configuration Item Explanation
	Memory Mode
	Example
	Standalone Mode
	Configuration Item Explanation
	Example
	Cluster Mode
	Configuration Item Explanation
	Example


	Data Source
	Example

	Rules
	Sharding
	Configuration Item Explanation
	Attention

	Readwrite-splitting
	Configuration Item Explanation

	HA
	Configuration Item Explanation

	Encryption
	Configuration Item Explanation
	Example

	Shadow DB
	Configuration Item Explanation

	SQL Parser
	Configuration Item Explanation

	Mixed Rules
	Configuration Item Explanation



	Properties Configuration
	Configuration Item Explanation

	Builtin Algorithm
	Introduction
	Usage
	Metadata Repository
	Background
	Parameters
	ZooKeeper Repository
	Etcd Repository
	SSD Repository

	Procedure
	Sample

	Sharding Algorithm
	Auto Sharding Algorithm
	Modulo Sharding Algorithm
	Hash Modulo Sharding Algorithm
	Volume Based Range Sharding Algorithm
	Boundary Based Range Sharding Algorithm
	Auto Interval Sharding Algorithm
	Consistent Hash Sharding Algorithm

	Standard Sharding Algorithm
	Inline Sharding Algorithm
	Interval Sharding Algorithm

	Complex Sharding Algorithm
	Complex Inline Sharding Algorithm

	Hint Sharding Algorithm
	Hint Inline Sharding Algorithm

	Class Based Sharding Algorithm

	Key Generate Algorithm
	Snowflake
	UUID

	Load Balance Algorithm
	Round Robin Algorithm
	Random Algorithm
	Delay Algorithm
	Weight Algorithm

	Encryption Algorithm
	MD5 Encrypt Algorithm
	AES Encrypt Algorithm
	RC4 Encrypt Algorithm
	SM3 Encrypt Algorithm
	SM4 Encrypt Algorithm

	Shadow Algorithm
	Column Shadow Algorithm
	Column Value Match Shadow Algorithm
	Column Regex Match Shadow Algorithm

	Hint Shadow Algorithm
	Simple Hint Shadow Algorithm


	Sharding Audit Algorithm
	Background
	Parameters
	DML_SHARDING_CONDITIONS algorithm

	Procedure
	Sample


	Special API
	Sharding
	Mandatory Routing
	Introduction
	Procedure
	Sample
	Sharding with Hint
	Rules Configuration
	Obtain HintManager
	Add Sharding Key Value
	Clear Sharding Key Value
	Complete Code Example
	Use SQL Annotations
	Terms of Use
	Complete Sample


	Transaction
	Use Java API
	Import Maven Dependency
	Use Distributed Transaction

	Use Spring Boot Starter
	Import Maven Dependency
	Configure Transaction Manager
	Use Distributed Transaction

	Use Spring Namespace
	Import Maven Dependency
	Configure Transaction Manager
	Use Distributed Transaction

	Atomikos Transaction
	Data Recovery
	Update Configuration

	Narayana Transaction
	Import Maven Dependency
	Customize Configuration Items
	Configure XA Transaction Manager Type

	Bitronix Transaction
	Import Maven Dependency
	Customize Configuration Items
	Configure XA Transaction Manager Type

	Seata Transaction
	Startup Seata Server
	Create Undo Log Table
	Update Configuration



	Unsupported Items
	DataSource Interface
	Connection Interface
	Statement and PreparedStatement Interface
	ResultSet Interface
	JDBC 4.1


	DBPlusEngine-Proxy
	Use of License in DBPlusEngine-Proxy
	Background
	Notice
	Procedure
	Post-processing

	Startup
	Use Binary Tar
	Startup Steps
	Using database protocol
	Using PostgreSQL
	Using MySQL
	Using openGauss

	Using metadata persist repository
	Using ZooKeeper
	Using Etcd

	Using Distributed Transaction
	Using user-defined algorithm
	Notices

	Use Docker
	Background
	Notice
	Steps
	Configuration Example

	Using Operator
	What is DBPlusEngine-Operator?
	Terms
	CRD

	Advantages
	Simplified configuration
	Easy to expand
	Simple operation and maintenance

	Architecture
	Install DBPlusEngine-Operator
	Install DBPlusEngine-Operator-Cluster cluster
	DBPlusEngine-Operator Parameters
	DBPlusEngine-Operator parameters

	DBPlusEngine-Operator-Cluster Parameters
	DBPlusEngine-Operator-Cluster parameters
	Compute Node DBPlusEngine-Operator-Cluster Server Authority Configuration Items
	Compute Node DBPlusEngine-Operator-Cluster Server Mode Configuration Items
	Governance Node ZooKeeper Configuration Item

	Sample
	dbplusengine-operator/values.yaml
	dbplusengine-proxy/values.yaml

	Clean
	Related References

	Add dependencies
	Add Bitronix dependencies
	Add Bitronix dependencies
	jar file downloads

	Add Narayana dependencies
	Add Narayana dependencies
	jar file downloads



	Yaml Configuration
	Login Authentication
	Password Authentication
	LDAP Authentication
	Example 1
	Example 2
	Hybrid Authentication


	Authority
	Configuration Item Explanation
	Example
	ALL_PERMITTED
	DATABASE_PERMITTED


	Traffic Dual Routing
	Instruction for Use
	Configuration Item Description
	Built-in Forwarding Matching Algorithm
	Hint Based Forwarding Matching Algorithm
	Hint Forwarding Matching Algorithm Based on SQL
	Forwarding Matching Algorithm Based on Segment (SegmentTrafficAlgorithm)
	String Forwarding Matching Algorithm Based on SQL
	Regular Forwarding Matching Algorithm Based on SQL String
	TransactionTrafficAlgorithm
	Forwarding Matching Algorithm Based on the First SQL
	Unified Forwarding JDBC Matching Algorithm
	Unified Forwarding Proxy Matching Algorithm

	Built-in Forwarding Load Balancing Algorithm
	TrafficLoadBalanceAlgorithm
	Load balancing Algorithm for Random Proxy Instances
	Load Balancing Algorithm for Polling Proxy Instances

	Related Reference

	Properties
	Introduction
	Configuration Item Explanation


	DistSQL
	Syntax
	Syntax Rule
	Identifier
	Literal

	RDL Syntax
	Storage Unit Definition
	Rule Definition
	Sharding
	Single Table
	Read/write Splitting
	DB Discovery
	Encrypt
	Shadow


	RQL Syntax
	Storage Unit Query
	Rule Query
	Sharding
	Single Table
	Read/write Splitting
	DB Discovery
	Encrypt
	Shadow


	RAL Syntax
	Hint
	Migration
	Resharding
	Encryption
	Decryption
	Circuit Breaker
	Global Rule
	Variable Management
	Other
	Notice

	RUL Syntax
	SQL Utility


	Usage
	Introduction
	Create Logic Database
	Resource Operation
	Rule Operation
	Notice

	Sharding
	Resource Operation
	Rule Operation

	readwrite_splitting
	Resource Operation
	Rule Operation

	Encrypt
	Resource Operation
	Rule Operation

	Shadow
	Resource Operation
	Rule Operation

	DB Discovery
	Resource Operation
	Rule Operation



	Authority Control
	Authority Classification
	Global Authority
	Object Authority

	DistSQL List
	Example
	User Management
	Initial User Management
	Ordinary User Management
	Create User
	Modify User
	Delete User

	View User List

	Role Management
	Create Role
	Delete Role
	View Role List

	Authority Management
	Authorize
	Revocation of Authorization

	Related Reference

	DistSQL Authority Control
	Authority Classification
	Global Authority
	Object Authority

	DistSQL List

	Slow Query Log
	Background
	Parameters
	Requirements
	Sample
	Slow Query Log Format
	Related References

	Full Audit Logs
	Background
	Parameters
	Requirements
	Sample
	Full Audit Log Format
	Related References

	Scaling
	Introduction
	Build & Deployment
	Manual
	MySQL User Manual
	Environment
	Privileges
	Complete Procedure Example
	Prerequisite
	Procedure

	PostgreSQL User Manual
	Environment
	Privileges
	Complete Procedure Example
	Prerequisite
	Procedure

	openGauss User Manual
	Environment
	Privileges
	Complete Procedure Example
	Prerequisite
	Procedure



	Auto Scaling on Cloud (HPA)
	Parameters
	Notes
	Procedure
	Sample
	Related References

	Data Migration
	Introduction
	Build
	Background
	Prerequisites
	Procedure

	User Guide
	MySQL User Guide
	Environment
	Authority Required
	Complete Procedure Example
	Prerequisite
	Procedure

	PostgreSQL User Guide
	Environment
	Authority Required
	Complete Procedure Example
	Prerequisite
	Procedure

	openGauss User Guide
	Environment
	Authority required
	Complete Procedure Example
	Prerequisite
	Procedure



	Session Management
	Usage
	View Session
	Kill Session


	Observability
	Agent Configuration
	Directory structure
	Configuration Description
	Parameter Description

	Used in DBPlusEngine-Proxy


	Error Code
	SQL Error Code
	Kernel Exception
	Meta data
	Data
	Syntax
	Connection
	Transaction
	Lock
	Audit
	Cluster
	Migration
	DistSQL

	Feature Exception
	Data Sharding
	Readwrite Splitting
	Database HA
	SQL Dialect Translator
	Traffic Management
	Data Encrypt
	Shadow Database

	Other Exception

	Server Error Code


	Dev Manual
	Mode
	StandalonePersistRepository
	ClusterPersistRepository
	GovernanceWatcher

	Configuration
	RuleBuilder
	YamlRuleConfigurationSwapper
	ShardingSphereYamlConstruct

	Kernel
	SQLRouter
	SQLRewriteContextDecorator
	SQLExecutionHook
	ResultProcessEngine
	StoragePrivilegeHandler

	DataSource
	DatabaseType
	DialectTableMetaDataLoader
	DataSourcePoolMetaData
	DataSourcePoolDestroyer

	SQL Parser
	DatabaseTypedSQLParserFacade
	SQLVisitorFacade

	Proxy
	DatabaseProtocolFrontendEngine
	JDBCDriverURLRecognizer
	AuthorityProviderAlgorithm

	Data Sharding
	ShardingAlgorithm
	KeyGenerateAlgorithm
	DatetimeService
	DatabaseSQLEntry

	Read/write splitting
	ReadwriteSplittingType
	ReadQueryLoadBalanceAlgorithm

	HA
	DatabaseDiscoveryType

	Distributed Transaction
	ShardingSphereTransactionManager
	XATransactionManagerProvider
	XADataSourceDefinition
	DataSourcePropertyProvider

	Scaling
	ScalingEntry
	JobCompletionDetectAlgorithm
	DataConsistencyCheckAlgorithm
	SingleTableDataCalculator

	SQL Checker
	SQLChecker

	Encryption
	EncryptAlgorithm
	QueryAssistedEncryptAlgorithm

	Shadow DB
	ShadowAlgorithm

	Observability
	PluginDefinitionService
	PluginBootService
	Proxy Agent Monitoring Metrics

	Traffic Dual Routing
	TrafficAlgorithm
	TrafficLoadBalanceAlgorithm


	Best Practices
	Authority Control
	Authority Configuration
	Do not Use Role Management
	Using Role Management

	Data Sharding
	Distributed Transaction
	Read/Write Splitting
	Elastic Scaling
	Data Encryption
	Shadow DB
	Cluster Deployment
	Proxy + LDAP & LDAPS Application Case
	Background
	Basic Environment
	LDAP Server Configuration
	JDK Import Certificate
	Proxy-LDAP Test
	Proxy-LDAPS Test


	Test Manual
	Integration Test
	Module Test
	Performance Test
	Integration Test
	Process
	Configuration
	Environment Configuration
	Assertion Configuration

	Notice

	Performance Test
	SysBench DBPlusEngine-Proxy Empty Rule Performance Test
	Objectives
	Set up the test environment
	Server information
	Database
	Stress testing tool
	DBPlusEngine-Proxy
	bin/start.sh
	config.yaml


	Test phase
	Environment setup
	Stress testing command
	Stress testing report analysis
	Noticeable features


	BenchmarkSQL DBPlusEngine-Proxy Sharding Performance Test
	Objective
	Method
	Fine tuning to test tools
	Remove the foreign key and extraHistID

	Stress testing environment or parameter recommendations
	It is recommended to run DBPlusEngine using Java 17
	DBPlusEngine data sharding recommendations
	PostgreSQL JDBC URL parameter recommendations
	DBPlusEngine Proxy server.yaml parameter recommendations

	Appendix
	BenchmarkSQL data sharding reference configuration

	BenchmarkSQL 5.0 PostgreSQL statement list
	Create tables
	Create indexes
	New Order business
	Payment business
	Order Status business
	Stock level business
	Delivery BG business



	Module Test
	SQL Parser Test
	Prepare Data
	SQL Data
	Assert Data


	SQL Rewrite Test
	Target
	Test




	Reference
	Management
	Data Structure in Registry Center
	/rules
	/props
	/metadata/${schemaName}/dataSources
	/metadata/${schemaName}/rules
	/metadata/${schemaName}/tables
	/nodes/compute_nodes
	/nodes/storage_nodes


	Sharding
	SQL Parsing
	SQL Route
	SQL Rewrite
	SQL Execution
	Result Merger
	Query Optimization
	Parse Engine
	Abstract Syntax Tree
	SQL Parser
	Features
	API Usage


	Route Engine
	Sharding Route
	Direct Route
	Standard Route
	Cartesian Route

	Broadcast Route
	Schema & Table Route
	Database Schema Route
	Database Instance Route
	Unicast Route
	Ignore Route


	Rewrite Engine
	Correctness Rewrite
	Identifier Rewrite
	Column Derivation
	Pagination Revision
	Batch Split
	Optimization Rewrite
	Single Node Optimization
	Stream Merger Optimization


	Execute Engine
	Connection Mode
	MEMORY_STRICTLY Mode
	CONNECTION_STRICTLY Mode

	Automatic Execution Engine
	Preparation Phrase
	Execution Phrase


	Merger Engine
	Iteration Merger
	Order-by Merger
	Group-by Merger
	Aggregation Merger
	Pagination Merger


	Transaction
	Navigation
	XA Transaction
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Seata BASE transaction
	Init Seata Engine
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback


	Scaling
	Principle Description
	Phase Description
	Preparing Phase
	Inventory Phase
	Incremental Phase
	Switching Phase


	Encryption
	Process Details
	Overall Architecture
	Encryption Rule
	Encryption Process

	Detailed Solution
	New Business
	Online Business Transformation

	The advantages of Middleware encryption service
	Solution
	EncryptAlgorithm
	QueryAssistedEncryptAlgorithm


	Shadow
	Overall Architecture
	Shadow Rule
	Routing Process
	Shadow Judgment Process
	DML Statement
	DDL Statement

	Shadow Algorithm
	Use Example
	Scenario
	Shadow DB configuration
	Shadow DB environment
	Shadow algorithm example


	Login Authentication
	MySQL Authentication Protocol
	PostgreSQL Authentication Protocol
	OpenGauss Authentication Protocol
	LDAP

	Data Migration
	Explanation
	Execution Stage Explained
	Preparation
	Stock data migration
	The Synchronization of incremental data
	Traffic Switching

	References

	FAQ
	[Driver] Why there may be an error when configuring both shardingsphere-jdbc-spring-boot-starter and a spring-boot-starter of certain datasource pool(such as druid)?
	[Driver] Why is xsd unable to be found when Spring Namespace is used?
	[Driver] Found a JtaTransactionManager in spring boot project when integrating with transaction of XA
	[Proxy] In a Windows environment, I could not find or load main class org.apache.shardingsphere.proxy.Bootstrap, how to solve it?
	[Proxy] How to add a new logic schema dynamically when using DBPlusEngine-Proxy?
	[Proxy] How to use suitable database tools when connecting DBPlusEngine-Proxy?
	[Proxy] When using a client such as Navicat to connect to DBPlusEngine-Proxy, if DBPlusEngine-Proxy does not create a Schema or does not add a Resource, the client connection will fail?
	[Sharding] How to solve Cloud not resolve placeholder … in string value … error?
	[Sharding] Why does float number appear in the return result of inline expression?
	[Sharding] If sharding database is partial, should tables without sharding database & table configured in sharding rules?
	[Sharding] When generic Long type SingleKeyTableShardingAlgorithm is used, why doesClassCastException: Integer can not cast to Long exception appear?
	[Sharding:raw-latex:PROXY] When implementing the StandardShardingAlgorithm custom algorithm, the specific type of Comparable is specified as Long, and the field type in the database table is bigint, a ClassCastException: Integer can not cast to Long exception occurs.
	[Sharding] Why are the default distributed auto-augment key strategy provided by DBPlusEngine not continuous and most of them end with even numbers?
	[Sharding] How to allow range query with using inline sharding strategy(BETWEEN AND, >, <, >=, <=)?
	[Sharding] Why does my custom distributed primary key do not work after implementing KeyGenerateAlgorithm interface and configuring type property?
	[Sharding] In addition to internal distributed primary key, does ShardingSphere support other native auto-increment keys?
	[Encryption] How to solve that data encryption can’t work with JPA?
	[DistSQL] How to set custom JDBC connection properties or connection pool properties when adding a data source using DistSQL?
	[DistSQL] How to solve Resource [xxx] is still used by [SingleTableRule]. exception when dropping a data source using DistSQL?
	[DistSQL] How to solve Failed to get driver instance for jdbcURL=xxx. exception when adding a data source using DistSQL?
	[Other] How to debug when SQL can not be executed rightly in DBPlusEngine?
	[Other] Why do some compiling errors appear? Why did not the IDEA index the generated codes?
	[Other] In SQLSever and PostgreSQL, why does the aggregation column without alias throw exception?
	[Other] Why does Oracle database throw “Order by value must implements Comparable” exception when using Timestamp Order By?
	[Other] In Windows environment,when cloning DBPlusEngine source code through Git, why prompt filename too long and how to solve it?
	[Other] How to solve Type is required error?
	[Other] How to speed up the metadata loading when service starts up?
	[Other] The ANTLR plugin generates codes in the same level directory as src, which is easy to commit by mistake. How to avoid it?
	[Other] Why is the database sharding result not correct when using Proxool?
	[Other] The property settings in the configuration file do not take effect when integrating DBPlusEngine with Spring Boot 2.x ?


	Obtain

